Thanks to the efforts of the robotics and autonomous systems community,
robots are becoming ever more capable. There is also an increasing demand from
end-users for autonomous service robots that can operate in real environments
for extended periods. In the STRANDS project we are tackling this demand
head-on by integrating state-of-the-art artificial intelligence and robotics
research into mobile service robots, and deploying these systems for long-term
installations in security and care environments. Over four deployments, our
robots have been operational for a combined duration of 104 days autonomously
performing end-user defined tasks, covering 116km in the process. In this
article we describe the approach we have used to enable long-term autonomous
operation in everyday environments, and how our robots are able to use their
long run times to improve their own performance
Autonomous robots that are to assist humans in their daily lives must recognize and understand the meaning of objects in their environment. However, the open nature of the world means robots must be able to learn and extend their knowledge about previously unknown objects on-line. In this work we investigate the problem of unknown object hypotheses generation, and employ a semantic web-mining framework along with deep-learning-based object detectors. This allows us to make use of both visual and semantic features in combined hypotheses generation. Experiments on data from mobile robots in real world application deployments show that this combination improves performance over the use of either method in isolation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.