A new THz/IR/UV photon source at Jefferson Lab is the first of a new generation of light sources based on an Energy-Recovered, (superconducting) Linac (ERL). The machine has a 160 MeV electron beam and an average current of 10 mA in 75 MHz repetition rate hundred femtosecond bunches.These electron bunches pass through a magnetic chicane and therefore emit synchrotron radiation. For wavelengths longer than the electron bunch the electrons radiate coherently a broadband THz $ half cycle pulse whose average brightness is 45 orders of magnitude higher than synchrotron IR sources. Previous measurements showed 20 W of average power extracted [Carr, et al., Nature 420 (2002) 153]. The new facility offers simultaneous synchrotron light from the visible through the FIR along with broadband THz production of 100 fs pulses with 4200 W of average power.The FELs also provide record-breaking laser power [Neil, et al., Phys. Rev. Lett. 84 (2000) 662]: up to 10 kW of average power in the IR from 1 to 14 mm in 400 fs pulses at up to 74.85 MHz repetition rates and soon will produce similar pulses of 300-1000 nm light at up to 3 kW of average power from the UV FEL. These ultrashort pulses are ideal for maximizing the interaction with material surfaces. The optical beams are Gaussian with nearly perfect beam quality. See www.jlab.org/FEL for details of the operating characteristics; a wide variety of pulse train configurations are feasible from 10 ms long at high repetition rates to continuous operation.The THz and IR system has been commissioned. The UV system is to follow in 2005. The light is transported to user laboratories for basic and applied research. Additional lasers synchronized to the FEL are also available. Past activities have included production of carbon nanotubes, studies of vibrational relaxation of interstitial hydrogen in silicon, pulsed laser deposition and ablation, nitriding of metals, and energy flow in proteins. This paper will present the status of the system and discuss some of the discoveries we have made concerning the physics performance, design optimization, and operational limitations of such a first generation high power ERL light source. r
A new in-situ plasma processing technique is being developed at the Spallation Neutron Source (SNS) to improve the performance of the cavities in operation. The technique utilizes a low-density reactive oxygen plasma at room-temperature to remove top-surface hydrocarbons. The plasma processing technique increases the work function of the cavity surface and reduces the overall amount of vacuum and electron activity during cavity operation; in particular it increases the field-emission onset, which enables cavity operation at higher accelerating gradients. Experimental evidence also suggests that the SEY of the Nb surface decreases after plasma processing which helps mitigating multipacting issues. In this article, the main developments and results from the plasma processing R&D are presented and experimental results for in-situ plasma processing of dressed cavities in the SNS horizontal test apparatus are discussed. 2. FIELD EMISSION AND END-GROUP THERMAL INSTABILITY LIMITING THE ACCELERATING GRADIENTS IN THE SNS LINAC Field emission in superconducting radio-frequency (SRF) cavities is a well-known limiting factor for operation at high accelerating gradients [1-3]. Beyond certain electric field thresholds, the electrons from the metal surface of the cavity have a non-negligible probability of tunneling out. The field emitted electrons are accelerated by the stored electromagnetic fields in the cavity and subsequently deposit their energy by collision with the cavity radio-frequency (RF) surface leading to vacuum activity, increase of the surface temperature and Bremsstrahlung radiation. If the deposited energy-density is larger than the cooling capacity it can also lead to thermal breakdown of the superconductivity.
The Spallation Neutron Source project includes a superconducting linac section in the energy range from 186 MeV to 1000 MeV. For this energy range two types of cavities are needed with geometrical β values of β=0.61 and β=0.81. An aggressive cavity prototyping program is being pursued at Jefferson Lab, which calls for fabricating and testing four β=0.61 cavities and two β=0.81 cavities. Both types consist of six cells made from high purity niobium and feature one HOM coupler of the TESLA type on each beam pipe and a port for a high power coaxial input coupler. Three of the four β=0.61 cavities will be used for a cryomodule test at the end of 2001. Two cavities of each type have been fabricated and the first tests on both cavities exceeded the design values for gradient and Q value: E acc = 10.1 MV/m and Q = 5×10 9 at 2.1K for the β=0.61 and E acc = 12.5 MV/m and Q = 5×10 9 at 2.1 K for the β=0.81.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.