This research article proposes a new handwritten Malayalam character recognition model based on AlexNet based architecture. The Malayalam language consists of a variety of characters having similar features, thus, differentiating characters is a challenging task. A lot of handcrafted feature extraction methods have been used for the classification of Malayalam characters. Convolutional Neural Networks (CNN) is one of the popular methods used in image and language recognition. AlexNet based CNN is proposed for feature extraction of basic and compound Malayalam characters. Furthermore, Support Vector Machine (SVM) is used for classification of the Malayalam characters. The 44 primary and 36 compound Malayalam characters are recognised with better accuracy and achieved minimal time consumption using this model. A dataset consisting of about 180,000 characters is used for training and testing purposes. This proposed model produces an efficiency of 98% with the dataset. Further, a dataset for Malayalam characters is developed in this research work and shared on Internet.
This research article proposes a new handwritten Malayalam character recognition model based on AlexNet based architecture. The Malayalam language consists of a variety of characters having similar features, thus, differentiating characters is a challenging task. A lot of handcrafted feature extraction methods have been used for the classification of Malayalam characters. Convolutional Neural Networks (CNN) is one of the popular methods used in image and language recognition. AlexNet based CNN is proposed for feature extraction of basic and compound Malayalam characters. Furthermore, Support Vector Machine (SVM) is used for classification of the Malayalam characters. The 44 primary and 36 compound Malayalam characters are recognised with better accuracy and achieved minimal time consumption using this model. A dataset consisting of about 180,000 characters is used for training and testing purposes. This proposed model produces an efficiency of 98% with the dataset. Further, a dataset for Malayalam characters is developed in this research work and shared on Internet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.