Gamma-ray bursts (GRBs) are produced by rare types of massive stellar explosion. Their rapidly fading afterglows are often bright enough at optical wavelengths that they are detectable at cosmological distances. Hitherto, the highest known redshift for a GRB was z = 6.7 (ref. 1), for GRB 080913, and for a galaxy was z = 6.96 (ref. 2). Here we report observations of GRB 090423 and the near-infrared spectroscopic measurement of its redshift, z = 8.1(-0.3)(+0.1). This burst happened when the Universe was only about 4 per cent of its current age. Its properties are similar to those of GRBs observed at low/intermediate redshifts, suggesting that the mechanisms and progenitors that gave rise to this burst about 600,000,000 years after the Big Bang are not markedly different from those producing GRBs about 10,000,000,000 years later.
We present an updated catalogue of 113 X-ray flares detected by Swift in the ~33 per cent of the X-ray afterglows of gamma-ray burst (GRB). 43 flares have a measured redshift. For the first time the analysis is performed in four different X-ray energy bands, allowing us to constrain the evolution of the flare temporal properties with energy. We find that flares are narrower at higher energies: their width follows a power-law relation w ~ E^(-0.5) reminiscent of the prompt emission. Flares are asymmetric structures, with a decay time which is twice the rise time on average. Both time-scales linearly evolve with time, giving rise to a constant rise-to-decay ratio: this implies that both time-scales are stretched by the same factor. As a consequence, the flare width linearly evolves with time to larger values: this is a key point that clearly distinguishes the flare from the GRB prompt emission. The flare 0.3-10 keV peak luminosity decreases with time, following a power-law behaviour with large scatter: Lpk ~ t^(-2.7+/-0.5). When multiple flares are present, a global softening trend is established: each flare is on average softer than the previous one. The 0.3-10 keV isotropic energy distribution is a lognormal peaked at 10^51 erg, with a possible excess at low energies. The flare average spectral energy distribution is found to be a power law with spectral energy index β ~ 1.1. These results confirmed that the flares are tightly linked to the prompt emission. However, after considering various models we conclude that no model is currently able to account for the entire set of observations
We show that our previously proposed anti-hierarchical baryon collapse scenario for the joint evolution of black holes and host galaxies predicts quasar luminosity functions at redshifts 1.5 z 6 and local properties in nice agreement with observations. In our model the quasar activity marks and originates the transition between an earlier phase of violent and heavily dust-enshrouded starburst activity promoting rapid black hole growth, and a later phase of almost passive evolution; the former is traced by the submillimeter-selected sources, while the latter accounts for the high number density of massive galaxies at substantial redshifts z 1.5, the population of Extremely Red Objects, and the properties of local ellipticals.
We present multiwavelength observations of the afterglow of GRB 130427A, the brightest (in total fluence) gamma-ray burst of the past 29 years. Optical spectroscopy from Gemini-North reveals the redshift of the GRB to be z = 0.340, indicating that its unprecedented brightness is primarily the result of its relatively close proximity to Earth; the intrinsic luminosities of both the GRB and its afterglow are not extreme in comparison to other bright GRBs. We present a large suite of multiwavelength observations spanning from 300 s to 130 d after the burst and demonstrate that the afterglow shows relatively simple, smooth evolution at all frequencies, with no significant latetime flaring or rebrightening activity. The entire dataset from 1 GHz to 10 GeV can be modeled as synchrotron emission from a combination of reverse and forward shocks in good agreement with the standard afterglow model, providing strong support to the applicability of the underlying theory and clarifying the nature of the GeV emission observed to last for minutes to hours following other very bright GRBs. A tenuous, wind-stratified circumburst density profile is required by the observations, suggesting a massive-star progenitor with a low mass-loss rate, perhaps due to low metallicity. GRBs similar in nature to GRB 130427A, inhabiting low-density media and exhibiting strong reverse shocks, are probably not uncommon but may have been difficult to recognize in the past owing to their relatively faint late-time radio emission; more such events should be found in abundance by the new generation of sensitive radio and millimeter instruments. 25 Here and elsewhere we assume a standard ΛCDM cosmological model with Ω Λ = 0.7, Ωm = 0.3, h = 0.7.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.