BackgroundHeart failure (HF) prevalence is increasing in the United States. Mechanical Circulatory Support (MCS) therapy is an option for Advanced HF (AdHF) patients. Perioperatively, multiorgan dysfunction (MOD) is linked to the effects of device implantation, augmented by preexisting HF. Early recognition of MOD allows for better diagnosis, treatment, and risk prediction. Gene expression profiling (GEP) was used to evaluate clinical phenotypes of peripheral blood mononuclear cells (PBMC) transcriptomes obtained from patients' blood samples. Whole blood (WB) samples are clinically more feasible, but their performance in comparison to PBMC samples has not been determined.MethodsWe collected blood samples from 31 HF patients (57±15 years old) undergoing cardiothoracic surgery and 7 healthy age-matched controls, between 2010 and 2011, at a single institution. WB and PBMC samples were collected at a single timepoint postoperatively (median day 8 postoperatively) (25–75% IQR 7–14 days) and subjected to Illumina single color Human BeadChip HT12 v4 whole genome expression array analysis. The Sequential Organ Failure Assessment (SOFA) score was used to characterize the severity of MOD into low (≤ 4 points), intermediate (5–11), and high (≥ 12) risk categories correlating with GEP.ResultsResults indicate that the direction of change in GEP of individuals with MOD as compared to controls is similar when determined from PBMC versus WB. The main enriched terms by Gene Ontology (GO) analysis included those involved in the inflammatory response, apoptosis, and other stress response related pathways. The data revealed 35 significant GO categories and 26 pathways overlapping between PBMC and WB. Additionally, class prediction using machine learning tools demonstrated that the subset of significant genes shared by PBMC and WB are sufficient to train as a predictor separating the SOFA groups.ConclusionGEP analysis of WB has the potential to become a clinical tool for immune-monitoring in patients with MOD.
Opinion statementColorectal cancer (CRC) imposes significant morbidity and mortality, yet it is also largely preventable with evidence-based screening strategies. In May 2021, the US Preventive Services Task Force updated guidance, recommending screening begin at age 45 for average-risk individuals to reduce CRC incidence and mortality in the United States (US). The Task Force recommends screening with one of several screening strategies: high-sensitivity guaiac fecal occult blood test (HSgFOBT), fecal immunochemical test (FIT), multi-target stool DNA (mt-sDNA) test, computed tomographic (CT) colonography (virtual colonoscopy), flexible sigmoidoscopy, flexible sigmoidoscopy with FIT, or traditional colonoscopy. In addition to these recommended options, there are several emerging and novel CRC screening modalities that are not yet approved for first-line screening in average-risk individuals. These include blood-based screening or “liquid biopsy,” colon capsule endoscopy, urinary metabolomics, and stool-based microbiome testing for the detection of colorectal polyps and/or CRC. In order to maximize CRC screening uptake in the US, patients and providers should engage in informed decision-making about the benefits and limitations of recommended screening options to determine the most appropriate screening test. Factors to consider include the invasiveness of the test, test performance, screening interval, accessibility, and cost. In addition, health systems should have a programmatic approach to CRC screening, which may include evidence-based strategies such as patient education, provider education, mailed screening outreach, and/or patient navigation, to maximize screening participation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.