Abstract. Recent studies related with earthquake prediction involve statistical studies of the ground electric self-potential behavior. Published results about the complexity of this kind of processes encourage us to study the statistical behavior of the ground electric self-potential recorded in Guerrero state, Mexico. This region is characterized by high seismicity. The electric self-potential variations were recorded in the Acapulco station directly from the ground. The sampling period was four seconds and the data were stored from March to December of 1993. Two significant earthquakes (EQs) occurred near this station, 15 May and 24 October whose magnitudes were Mw=6.0 and Mw=6.6 respectively. A preliminary processing was carried out consisting of a moving average of the original time series in order to filter the very high frequencies and to complete short lacks of data and outliers. Then, a visual inspection of the complete filtered signal was performed to search some seismic electric signals (SES), which were ambiguously depicted. Subsequently, a detrending of µ=0 was applied with the windows of 3.3, 6.6 and 10 h. Later, the analysis of the spectral exponent β was made, showing changes during the total period examined, and the most evident changes occurred during the preparation mechanism of the Mw=6.6 EQ. Fifteen days before the 24 October EQ, a Brownian-noise like behavior was displayed (β≈2), having a duration of about two days. In addition a Higuchi fractal method and wavelet analysis were made confirming the presence of the β-anomaly.
Abstract. In this work, we present a statistical study of geoelectric time series from three Mexican regions with recognized different levels of seismicity. This study is made by means of both the Higuchi's method and the detrended fluctuation analysis for the detection of fractal behavior. With these methods we present scatter plots corresponding to scaling exponents for short and large lags arisen from crossover points in the geoelectric data. Through these scatter plots we observe a reasonable segregation of clouds of points corresponding to the three mentioned regions. These results permit to suggest that a different level of characteristic seismicity in one region is translated into a different level of geoelectric activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.