Corneal avascularity—the absence of blood vessels in the cornea—is required for optical clarity and optimal vision, and has led to the cornea being widely used for validating pro- and anti-angiogenic therapeutic strategies for many disorders1-4. But the molecular underpinnings of the avascular phenotype have until now remained obscure5-10 and are all the more remarkable given the presence in the cornea of vascular endothelial growth factor (VEGF)-A, a potent stimulator of angiogenesis, and the proximity of the cornea to vascularized tissues. Here we show that the cornea expresses soluble VEGF receptor-1 (sVEGFR-1; also known as sflt-1) and that suppression of this endogenous VEGF-A trap11 by neutralizing antibodies, RNA interference or Cre-lox-mediated gene disruption abolishes corneal avascularity in mice. The spontaneously vascularized corneas of corn1 and Pax6+/− mice12,13 and Pax6+/− patients with aniridia14 are deficient in sflt-1, and recombinant sflt-1 administration restores corneal avascularity in corn1 and Pax6+/− mice. Manatees, the only known creatures uniformly to have vascularized corneas15, do not express sflt-1, whereas the avascular corneas of dugongs, also members of the order Sirenia, elephants, the closest extant terrestrial phylogenetic relatives of manatees, and other marine mammals (dolphins and whales) contain sflt-1, indicating that it has a crucial, evolutionarily conserved role. The recognition that sflt-1 is essential for preserving the avascular ambit of the cornea can rationally guide its use as a platform for angiogenic modulators, supports its use in treating neovascular diseases, and might provide insight into the immunological privilege of the cornea.
Two major isoforms of the cell adhesion molecule neurofascin NF186 and NF155 are expressed in the central nervous system (CNS). We have investigated their roles in the assembly of the node of Ranvier and show that they are targeted to distinct domains at the node. At the onset of myelination, NF186 is restricted to neurons, whereas NF155 localizes to oligodendrocytes, the myelin-forming glia of the CNS. Coincident with axon ensheathment, NF155 clusters at the paranodal regions of the myelin sheath where it localizes in apposition to the axonal adhesion molecule paranodin/contactin-associated protein (Caspr1), which is a constituent of the septate junction-like axo-glial adhesion zone. Immunoelectron microscopy confirmed that neurofascin is a glial component of the paranodal axo-glial junction. Concentration of NF155 with Caspr1 at the paranodal junctions of peripheral nerves is also a feature of Schwann cells. In Shiverer mutant mice, which assemble neither compact CNS myelin nor normal paranodes, NF155 (though largely retained at the cell body) is also distributed at ectopic sites along axons, where it colocalizes with Caspr1. Hence, NF155 is the first glial cell adhesion molecule to be identified in the paranodal axo-glial junction, where it likely interacts with axonal proteins in close association with Caspr1.
Patterns of growth and cell movement in the developing and adult corneal epithelium were investigated by analysing clonal patches of LacZ-expressing cells in chimeric and X-inactivation mosaic mice. It was found that cell proliferation throughout the basal corneal epithelium during embryogenesis and early postnatal life creates a disordered mosaic pattern of
Epithelial cell monolayers show remarkable long-range displacement and velocity correlations reminiscent of supercooled liquids and active nematics. Here we show that many of the observed features can be understood within the framework of active matter at high densities. In particular, we argue that uncoordinated but persistent cell motility coupled to the collective elastic modes of the cell sheet is sufficient to produce characteristic swirl-like correlations. This includes a divergent correlation length in the limit of infinite persistence time. We derive this result using both continuum active linear elasticity and a normal modes formalism, and validate analytical predictions with numerical simulations of two agent-based models of soft elastic particles and in-vitro experiments of confluent corneal epithelial cell sheets. Our analytical model is able to fit measured velocity correlation functions without any free parameters. SIGNIFICANCEUnderstanding how cells in confluent epithelial sheets coordinate to create coherent motion patterns is a central question in cell and developmental biology. We show that a simple active matter model that couples crawling of an individual cell to the elastic environment provided by the surrounding cells, faithfully captures large-scale coherent motion patterns observed in the epithelial cell monolayers. The linear elastic model can be analyzed analytically and is able to match numerical simulations of two complementary models without any fitting parameters. It is a good match for experiments on corneal epithelial cells.
The correct Pax6 dosage is necessary for normal clonal growth during corneal development, normal limbal stem cell activity, and correct corneal epithelial cell migration. Disruption of normal cell movement in heterozygotes may be the consequence of failure of nonautonomous guidance cues. Degeneration of the corneal surface in aniridia-related keratopathy relates to both a deficiency within the limbal stem cell niche and nonautonomous diversion of corneal epithelial cell migration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.