The blood-brain barrier (BBB) can be a substantial impediment to achieving therapeutic levels of drugs in the CNS. Certain chemical functionality such as the carboxylic acid is a general liability for BBB permeability preventing significant CNS distribution of a drug from a systemic dose. Here, we report a strategy for CNS-selective distribution of the carboxylic acid containing thyromimetic sobetirome using prodrugs targeted to fatty-acid amide hydrolase (FAAH), which is expressed in the brain. Two amide prodrugs of sobetirome were shown to be efficient substrates of FAAH with V/K values comparable to the natural endocannabinoid FAAH substrate anandamide. In mice, a systemic dose of sobetirome prodrug leads to a substantial ∼60-fold increase in brain distribution (K) of sobetirome compared to an equimolar systemic dose of the parent drug. The increased delivery of sobetirome to the brain from the prodrug was diminished by both pharmacological inhibition and genetic deletion of FAAH in vivo. The increased brain exposure of sobetirome arising from the prodrug corresponds to ∼30-fold increased potency in brain target engagement compared to the parent drug. These results suggest that FAAH-targeted prodrugs can considerably increase drug exposure to the CNS with a concomitant decrease in systemic drug levels generating a desirable distribution profile for CNS acting drugs.
The endoplasmic reticulum (ER) plays critical roles in the processing of secreted and transmembrane proteins. To deliver small molecules to this organelle, we synthesized fluorinated hydrophobic analogues of the fluorophore rhodol. These cell-permeable fluorophores are exceptionally bright, with quantum yields of ~ 0.8, and specifically accumulate in the ER of living HeLa cells, as imaged by confocal laser scanning microscopy. To target a biological pathway controlled by the ER, we linked a fluorinated hydrophobic rhodol to 5-nitrofuran-2-acrylaldehyde. In contrast to an untargeted nitrofuran warhead, delivery of this electrophilic nitrofuran to the ER by the rhodol resulted in cytotoxicity comparable to the ER-targeted cytotoxin eeyarestatin I, and specifically inhibited protein processing by the ubiquitin-proteasome system. Fluorinated hydrophobic rhodols represent outstanding fluorophores that enable delivery of small molecules for targeting of ER-associated proteins and pathways.
Current therapeutic options for treating demyelinating disorders such as multiple sclerosis (MS) do not stimulate myelin repair, thus creating a clinical need for therapeutic agents that address axonal remyelination. Thyroid hormone is known to play an important role in promoting developmental myelination and repair, and CNS permeable thyromimetic agents could offer an increased therapeutic index compared to endogenous thyroid hormone. Sobetirome is a clinical stage thyromimetic that has been shown to have promising activity in preclinical models related to MS and X-linked adrenoleukodystrophy (X-ALD), a genetic disease that involves demyelination. Here we report a new series of sobetirome prodrugs containing ethanolamine-based promoieties that were found to undergo an intramolecular O,N acyl migration to form the pharmacologically relevant amide species. Several of these systemically administered prodrugs deliver more sobetirome to the brain compared to unmodified sobetirome. Pharmacokinetic properties of the parent drug sobetirome and amidoalcohol prodrug 3 are described and prodrug 3 was found to be more potent than sobetirome in target engagement in the brain from systemic dosing.
There is currently great interest in developing drugs that stimulate myelin repair for use in demyelinating diseases such as multiple sclerosis. Thyroid hormone plays a key role in stimulating myelination during development and also controls the expression of important genes involved in myelin repair in adults. Because endogenous thyroid hormone in excess lacks a generally useful therapeutic index, it is not used clinically for indications other than hormone replacement; however, selective thyromimetics such as sobetirome offer a therapeutic alternative. Sobetirome is the only clinical-stage thyromimetic that is known to cross the blood-brain-barrier (BBB) and we endeavored to increase the BBB permeability of sobetirome using a prodrug strategy. Ester prodrugs of sobetirome were prepared based on literature reports of improved BBB permeability with other carboxylic acid containing drugs and BBB permeability was assessed in vivo. One sobetirome prodrug, ethanolamine ester 11, was found to distribute more sobetirome to the brain compared to an equimolar peripheral dose of unmodified sobetirome. In addition to enhanced brain levels, prodrug 11 displayed lower sobetirome blood levels and a brain/serum ratio that was larger than that of unmodified sobetirome. Thus, these data indicate that an ester prodrug strategy applied to sobetirome can deliver increased concentrations of the active drug to the central nervous system (CNS), which may prove useful in the treatment of CNS disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.