Many applications require a method for translating a large list of bond angles and bond lengths to precise atomic Cartesian coordinates. This simple but computationally consuming task occurs ubiquitously in modeling proteins, DNA, and other polymers as well as in many other fields such as robotics. To find an optimal method, algorithms can be compared by a number of operations, speed, intrinsic numerical stability, and parallelization. We discuss five established methods for growing a protein backbone by serial chain extension from bond angles and bond lengths. We introduce the Natural Extension Reference Frame (NeRF) method developed for Rosetta's chain extension subroutine, as well as an improved implementation. In comparison to traditional two-step rotations, vector algebra, or Quaternion product algorithms, the NeRF algorithm is superior for this application: it requires 47% fewer floating point operations, demonstrates the best intrinsic numerical stability, and offers prospects for parallel processor acceleration. The NeRF formalism factors the mathematical operations of chain extension into two independent terms with orthogonal subsets of the dependent variables; the apparent irreducibility of these factors hint that the minimal operation set may have been identified. Benchmarks are made on Intel Pentium and Motorola PowerPC CPUs.
In memory of Konstantin Alexandrovich Sevast 'yanov,1956-1984. Abstract. We prove that any pair of bivariate trinomials has at most five isolated roots in the positive quadrant. The best previous upper bounds independent of the polynomial degrees were much larger, e.g., 248832 (for just the non-degenerate roots) via a famous general result of Khovanski. Our bound is sharp, allows real exponents, allows degeneracies, and extends to certain systems of n-variate fewnomials, giving improvements over earlier bounds by a factor exponential in the number of monomials. We also derive analogous sharpened bounds on the number of connected components of the real zero set of a single n-variate m-nomial.
Consider a system F of n polynomial equations in n unknowns, over an algebraically closed field of arbitrary characteristic. We present a fast method to find a point in every irreducible component of the zero set Z of F . Our techniques allow us to sharpen and lower prior complexity bounds for this problem by fully taking into account the monomial term structure. As a corollary of our development we also obtain new explicit formulae for the exact number of isolated roots of F and the intersection multiplicity of the positive-dimensional part of Z. Finally, we present a combinatorial construction of nondegenerate polynomial systems, with specified monomial term structure and maximally many isolated roots, which may be of independent interest.
We give a new upper bound on the number of isolated roots of a polynomial system. Unlike many previous bounds, our bound can also be restricted to different open subsets of affine space. Our methods give significantly sharper bounds than the classical Bé zout theorems and further generalize the mixed volume root counts discovered in the late 1970s. We also give a complete combinatorial classification of the subsets of coefficients whose genericity guarantees that our bound is actually an exact root count in affine space. Our results hold over any algebraically closed field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.