Abstract.We report the results of a 1.2 mm continuum emission survey toward 146 IRAS sources thought to harbour highmass star forming regions. The sources have FIR colors typical of UCHII regions and were detected in the CS(2 → 1) line survey of Bronfman et al. (1996). Regions of 15 × 10 , centered on each IRAS source, were mapped with an angular resolution of ∼24 , using the SIMBA array on the SEST telescope. 1.2 mm emission was detected toward all IRAS sources. We find that the dust cores associated with these sources have typical sizes of 0.4 pc and masses of 5 × 10 3 M . Dust temperatures and luminosities, derived from the SED, are typically 32 K and 2.3 × 10 5 L .
Two years of microwave background observations with the Cosmic Background Imager (CBI) have been combined to give a sensitive, high resolution angular power spectrum over the range 400 < ℓ < 3500. This power spectrum has been referenced to a more accurate overall calibration derived from the Wilkinson Microwave Anisotropy Probe. The data cover 90 deg 2 including three pointings targeted for deep observations. The uncertainty on the ℓ > 2000 power previously seen with the CBI is reduced. Under the assumption that any signal in excess of the primary anisotropy is due to a secondary Sunyaev-Zeldovich anisotropy in distant galaxy clusters we use CBI, Arcminute Cosmology Bolometer Array Receiver, and Berkeley-Illinois-Maryland Association array data to place a constraint on the present-day rms mass fluctuation on 8 h −1 Mpc scales, σ 8 . We present the results of a cosmological parameter analysis on the ℓ < 2000 primary anisotropy data which show significant improvements in the parameters as compared to WMAP alone, and we explore the role of the small-scale cosmic microwave background data in breaking parameter degeneracies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.