INDEPTH geophysical and geological observations imply that a partially molten midcrustal layer exists beneath southern Tibet. This partially molten layer has been produced by crustal thickening and behaves as a fluid on the time scale of Himalayan deformation. It is confined on the south by the structurally imbricated Indian crust underlying the Tethyan and High Himalaya and is underlain, apparently, by a stiff Indian mantle lid. The results suggest that during Neogene time the underthrusting Indian crust has acted as a plunger, displacing the molten middle crust to the north while at the same time contributing to this layer by melting and ductile flow. Viewed broadly, the Neogene evolution of the Himalaya is essentially a record of the southward extrusion of the partially molten middle crust underlying southern Tibet.
Seismic data from central Tibet have been combined to image the subsurface structure and understand the evolution of the collision of India and Eurasia. The 410- and 660-kilometer mantle discontinuities are sharply defined, implying a lack of a subducting slab beneath the plateau. The discontinuities appear slightly deeper beneath northern Tibet, implying that the average temperature of the mantle above the transition zone is about 300 degrees C hotter in the north than in the south. There is a prominent south-dipping converter in the uppermost mantle beneath northern Tibet that might represent the top of the Eurasian mantle lithosphere underthrusting the northern margin of the plateau.
Besides the improved method we also use more data than Kind et al. [1996]. We have added teleseismic recordings of the dense wide-angle German Depth Profiling of Tibet and the Himalayas (GEDEPTH) deployment, which proved to be very successful because of the close spacing of these stations. We have also added data from the permanent broadband station Lhasa (LSA), permitting a laterally extended view into the lithosphere and upper mantle.The passive seismological part of INDEPTH II lasted from May until October 1994. Fifteen Reftek recording stations were operated in that time period. Nine stations were equipped with Guralp 3T broadband seismometers, and six with 1-Hz Mark L-4 seismometers. They were installed from the high Himalaya to approximately 150km north of the 27,491
Based on a 2 year seismic record from a local network, we characterize the deformation of the seismogenic crust of the Pamir in the northwestern part of the India-Asia collision zone. We located more than 6000 upper crustal earthquakes in a regional 3-D velocity model. For 132 of these events, we determined source mechanisms, mostly through full waveform moment tensor inversion of locally and regionally recorded seismograms. We also produced a new and comprehensive neotectonic map of the Pamir, which we relate to the seismic deformation. Along Pamir's northern margin, where GPS measurements show significant shortening, we find thrust and dextral strike-slip faulting along west to northwest trending planes, indicating slip partitioning between northward thrusting and westward extrusion. An active, north-northeast trending, sinistral transtensional fault system dissects the Pamir's interior, connecting the lakes Karakul and Sarez, and extends by distributed faulting into the Hindu Kush of Afghanistan. East of this lineament, the Pamir moves northward en bloc, showing little seismicity and internal deformation. The western Pamir exhibits a higher amount of seismic deformation; sinistral strike-slip faulting on northeast trending or conjugate planes and normal faulting indicate east-west extension and north-south shortening. We explain this deformation pattern by the gravitational collapse of the western Pamir Plateau margin and the lateral extrusion of Pamir rocks into the Tajik-Afghan depression, where it causes thin-skinned shortening of basin sediments above an evaporitic décollement. Superposition of Pamir's bulk northward movement and collapse and westward extrusion of its western flank causes the gradual change of surface velocity orientations from north-northwest to due west observed by GPS geodesy. The distributed shear deformation of the western Pamir and the activation of the Sarez-Karakul fault system may ultimately be caused by the northeastward propagation of India's western transform margin into Asia, thereby linking deformation in the Pamir all the way to the Chaman fault in the south in Afghanistan.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.