Interferometry as one of the most common core fusion diagnostics has traditionally suffered from incomplete vibration compensation. Dispersion interferometry promises a more complete compensation of vibrations. For this reason it is being employed in an increasing number of experiments. However, thus far none of them have shown reliable real-time low-latency processing of dispersion interferometry data. Nonetheless this is a necessity for most machines when trying to do density feedback control, most notably in long discharges like the ones planned at the W7-X stellarator and ITER. In this paper we report the development of a new phase extraction method specifically developed for real-time evaluation using field programmable gate arrays (FPGA). It has been shown to operate reliably during the operation phase OP1.2a at W7-X and is now routinely being used by the W7-X density feedback system up to very high densities above 1.4×1020 m-2 without showing 2π-wraps and exhibits increased wrap stability by double-data-rate sampling. A rigorous error analysis has been conducted shedding insights into the signal composition of a dispersion interferometer have been gained. This includes the environmental effects, most notably air humidity, on the phase measurement and the correction thereof.
In most laboratory setups in plasma physics, including magnetic-confinement experiments for fusion research, laser-based Thomson scattering allows for absolutely calibrated density measurements without input from other diagnostics and with high spatial resolution. A common issue is the alignment stability of either the laser beam or the observation optics. Frequent recalibrations are typically required. This is a challenge in particular for larger fusion experiments; while beam paths tend to get longer, the access for alignment and calibration gets more restricted. Therefore, simple, fast and robust calibration methods are required. A novel calibration technique has been developed at W7-X to account for alignment variations in the calibration procedure. This will decrease the pulse-to-pulse variations significantly and allow for a longer time duration before a recalibration becomes necessary. By monitoring the beam position accurately, it could be shown that misalignment leads to deterministic and reproducible changes in the measured density. The introduced density errors can be corrected for by monitoring the laser beam for every individual laser pulse. In the last experimental campaign, this has been done retrospectively by introducing parallel shifts to the laser beam path in order to show the feasibility of this method. It could be demonstrated that the impact of introduced shifts on the electron density can be successfully corrected for. For future campaigns, the beam alignment will intentionally be varied during the absolute calibration in order to cover the full range of expected beam positions. During the actual experiments, the beam positions will be monitored likewise and each density profile will be evaluated with the most suitable calibration factor. While probably not needed for W7-X, vibrations of the observation optics could be included in the same way.
A: Fusion experiments rely heavily on the measurement of the line-integrated electron density by interferometry for density feed-back control. In recent years the discharge length has increased dramatically and is continuing to rise, resulting in environmentally induced phase drifts to become an increasingly worrisome subject, since they falsify the interferometer's measurement of the density. Especially in larger Tokamaks the loss of density control due to uncontrolled changes in the optical path length can have a disastrous outcome. The control of environmental parameters in large diagnostic/experimental halls is costly and sometimes infeasible and in some cases cannot be retro-fitted to an existing machine. In this report we present a very cheap (ca. e 100), easily retro-fitted, real-time capable phase compensation scheme for interferometers measuring dispersive media over long time scales. The method is not limited to fusion, but can be applied to any continuously measuring interferometer measuring a dispersive medium. It has been successfully applied to the Wendelstein 7-X density feed-back interferometer. K: Plasma diagnostics -interferometry, Digital signal processing (DSP), Pattern recognition, cluster finding, calibration and fitting methods 1Corresponding author.
This contribution provides an overview of the core diagnostics as they are required for W7-X steady-state high-density operation with a divertor and profile control. The inferred profiles then address the stellarator optimization. A particular task is the characterization of fast ion slowing down and -losses, which in a classical stellarator reactor could result in unacceptable wall loads and ultimately are deleterious for the heating efficiency. The energy dissipated during operation, 10 MW • 1800 s impacts on the technical diagnostic realization via loads to in-vessel components, quasi steady-state operation requires adequate data acquisition and control systems.
The electron density and temperature profiles measured with Thomson scattering at the stellarator Wendelstein 7-X show features which seem to be unphysical, but so far could not be associated with any source of error considered in the data processing. A detailed Bayesian analysis reveals that errors in the spectral calibration cannot explain the features observed in the profiles. Rather, it seems that small fluctuations in the laser position are sufficient to affect the profile substantially. The impact of these fluctuations depends on the laser position itself, which, in turn, provides a method to find the optimum laser alignment in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.