We forecast two different chaotic dynamics of the quasiperiodically forced logistic map using the well-known deep learning framework Long Short-Term Memory. We generate two data sets and use one in the training process and the other in the testing process. The predicted values are evaluated using the metric called Root Mean Square Error and visualized using the scatter plots.The robustness of the Long Short-Term Memory model is evaluated using the number of units in the layers of the model. We also make multi-step forecasting of the considered system. We show that the considered Long Short-Term Memory model performs well in predicting chaotic attractors upto three steps.
Machine learning models play a vital role in the prediction task in several fields of study. In this work, we utilize the ability of machine learning algorithms for the prediction of occurrence of extreme events in a nonlinear mechanical system. Extreme events are rare events which occur ubiquitously in nature. We consider four machine learning models, namely Logistic Regression, Support Vector Machine, Random Forest and Multi-Layer Perceptron in our prediction task. We train these four machine learning models using training set data and compute the performance of each model using the test set data. We show that Multi-Layer Perceptron model performs better among the four models in the prediction of extreme events in the considered system. The persistent behaviour of the considered machine learning models are crosschecked with randomly shuffled training set and test set data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.