We study a three-species cyclic model whose organisms are vulnerable to contamination with an infectious disease which propagates person-to-person. We consider that individuals of one species perform an evolutionary self-preservation strategy by reducing the mobility rate to minimise infection risk whenever an epidemic outbreak reaches the neighbourhood. Running stochastic simulations, we quantify the changes in spatial patterns induced by unevenness in the cyclic game introduced by the mobility restriction strategy of organisms of one out of the species. Our findings show that variations in disease virulence impact the benefits of dispersal limitation reaction, with the relative reduction of the organisms' infection risk accentuating in surges of less contagious or deadlier diseases. The effectiveness of the mobility restriction tactic depends on the tolerable fraction of infected neighbours used as a trigger of the defensive strategy and the deceleration level. If each organism promptly reacts to the arrival of the first viral vectors in its surroundings with strict mobility reduction, contamination risk decreases significantly. Our conclusions may help biologists understand the impact of evolutionary defensive strategies in ecosystems during an epidemic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.