In this study, the effects of specific chemical modifications of amino acid side-chains on the in vitro enzyme degradation of type I collagen was studied. Two monofunctional epoxides of different size and chemistry were used to modify lysine and methylglyoxal was used to modify arginine. Lysine residues were modified using glycidol, a small hydrophilic reagent or n-butylglycidylether, a larger hydrophobic reagent. Amino acid analysis, swelling measurements, in vitro enzyme degradation analyses (using either collagenase, trypsin, acetyltrypsin, or cathepsin B), and gel chromatography were used to determine the effects of each chemical modification on purified type I collagen. Collagen solubilization by enzymes depended upon the size and chemistry of epoxides used to modify lysine residues. Modification of lysine residues by glycidol and arginine modification by methylglyoxal together significantly reduced collagen solubilization by acetyltrypsin and collagenase, whereas increased collagen solubilization was observed for all enzymes after lysine modification with n-butylglycidylether combined with arginine modification by methylglyoxal. Gel chromatographic analyses of collagen fragments solubilized by acetyltrypsin from type I collagen revealed that both the extent of solubilization and sites of cleavage were altered after lysine and arginine modification. In contrast, lysine and arginine modification only altered the amount of collagen solubilized by collagenase and had no effect on the amount collagen solubilized by cathepsin B. The ability to modulate the enzyme degradation of collagen-based materials as demonstrated in this study may facilitate the design of novel scaffolds for tissue regeneration or collagen-based drug/protein/gene delivery systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.