Ricin is an abundant protein component of Ricinus communis seeds (castor beans) that is exquisitely toxic to mammalian cells. It consists of an enzymic polypeptide that catalyzes the N-glycosidic cleavage of a specific adenine residue from 28S ribosomal RNA, joined by a single disulfide bond to a galactose (cell)-binding lectin. The enzymatic activity renders ribosomes containing depurinated 28S RNA incapable of protein synthesis. The bipartite molecular structure of ricin allows it to bind to the mammalian cell surface, enter via endocytic uptake, and deliver the catalytically active polypeptide into the cell cytosol where it irreversibly inhibits protein synthesis causing cell death. Because of its cytotoxic potency, modified ricin is being used for the selective killing of unwanted cells and for the toxigenic ablation of cell lineages in transgenic organisms.
The cytosolic coat-protein complex COP-I interacts with cytoplasmic 'retrieval' signals present in membrane proteins that cycle between the endoplasmic reticulum (ER) and the Golgi complex, and is required for both anterograde and retrograde transport in the secretory pathway. Here we study the role of COP-I in Golgi-to-ER transport of several distinct marker molecules. Microinjection of anti-COP-I antibodies inhibits retrieval of the lectin-like molecule ERGIC-53 and of the KDEL receptor from the Golgi to the ER. Transport to the ER of protein toxins, which contain a sequence that is recognized by the KDEL receptor, is also inhibited. In contrast, microinjection of anti-COP-I antibodies or expression of a GTP-restricted Arf-1 mutant does not interfere with Golgi-to-ER transport of Shiga toxin/Shiga-like toxin-1 or with the apparent recycling to the ER of Golgi-resident glycosylation enzymes. Overexpression of a GDP-restricted mutant of Rab6 blocks transport to the ER of Shiga toxin/Shiga-like toxin-1 and glycosylation enzymes, but not of ERGIC-53, the KDEL receptor or KDEL-containing toxins. These data indicate the existence of at least two distinct pathways for Golgi-to-ER transport, one COP-I dependent and the other COP-I independent. The COP-I-independent pathway is specifically regulated by Rab6 and is used by Golgi glycosylation enzymes and Shiga toxin/Shiga-like toxin-1.
The properties of a discrete membranous fraction isolated on sucrose gradients from castor bean endosperm have been examined . This fraction was previously shown to be the exclusive site of phosphorylcholine-glyceride transferase . The distribution of NADPH-cytochrome c reductase and antimycin insensitive NADH-cytochrome c reductase across the gradient followed closely that of the phosphorylcholine-glyceride transferase . This fraction also had NADH diaphorase activity and contained cytochromes b5 and P 450. On sucrose gradients containing 1 mM EDTA this fraction had a mean isopycnic density of 1 .12 g/cma and sedimented separately from the ribosomes ; electron micrographs showed that it was comprised of smooth membranes . When magnesium was included in the gradients to prevent the dissociation of membrane-bound ribosomes, the isopycnic density of the membrane fraction with its associated enzymes was increased to 1 .16 g/cma and under these conditions the electron micrographs showed that the membranes had the typical appearance of rough endoplasmic reticulum . Together these data show that the endoplasmic reticulum is the exclusive site of lecithin formation in the castor bean endosperm and establish a central role for this cytoplasmic component in the biogenesis of cell membranes .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.