No abstract
Postoperative chemoradiotherapy should be considered for all patients at high risk for recurrence of adenocarcinoma of the stomach or gastroesophageal junction who have undergone curative resection.
The p53 gene has been a constant source of fascination since its discovery nearly a decade ago. Originally considered to be an oncogene, several convergent lines of research have indicated that the wild-type gene product actually functions as a tumour suppressor gene. For example, expression of the neoplastic phenotype is inhibited, rather than promoted, when rat cells are transfected with the murine wild-type p53 gene together with mutant p53 genes and/or other oncogenes. Moreover, in human tumours, the short arm of chromosome 17 is often deleted. In colorectal cancers, the smallest common region of deletion is centred at 17p13.1; this region harbours the p53 gene, and in two tumours examined in detail, the remaining (non-deleted) p53 alleles were found to contain mutations. This result was provocative because allelic deletion coupled with mutation of the remaining allele is a theoretical hallmark of tumour-suppressor genes. In the present report, we have attempted to determine the generality of this observation; that is, whether tumours with allelic deletions of chromosome 17p contain mutant p53 genes in the allele that is retained. Our results suggest that (1) most tumours with such allelic deletions contain p53 point mutations resulting in amino-acid substitutions, (2) such mutations are not confined to tumours with allelic deletion, but also occur in at least some tumours that have retained both parental 17p alleles, and (3) p53 gene mutations are clustered in four 'hot-spots' which exactly coincide with the four most highly conserved regions of the gene. These results suggest that p53 mutations play a role in the development of many common human malignancies.
For colorectal cancer, it is recommended that carcinoembryonic antigen (CEA) be ordered preoperatively, if it would assist in staging and surgical planning. Postoperative CEA levels should be performed every 3 months for stage II and III disease for at least 3 years if the patient is a potential candidate for surgery or chemotherapy of metastatic disease. CEA is the marker of choice for monitoring the response of metastatic disease to systemic therapy. Data are insufficient to recommend the routine use of p53, ras, thymidine synthase, dihydropyrimidine dehydrogenase, thymidine phosphorylase, microsatellite instability, 18q loss of heterozygosity, or deleted in colon cancer (DCC) protein in the management of patients with colorectal cancer. For pancreatic cancer, CA 19-9 can be measured every 1 to 3 months for patients with locally advanced or metastatic disease receiving active therapy. Elevations in serial CA 19-9 determinations suggest progressive disease but confirmation with other studies should be sought. New markers and new evidence to support the use of the currently reviewed markers will be evaluated in future updates of these guidelines.
Previous studies have demonstrated that allelic deletions of the short arm of chromosome 17 occur in over 75% of colorectal carcinomas. Twenty chromosome 17p markers were used to localize the common region of deletion in these tumors to a region contained within bands 17p12 to 17p13.3. This region contains the gene for the transformation-associated protein p53. Southern and Northern blot hybridization experiments provided no evidence for gross alterations of the p53 gene or surrounding sequences. As a more rigorous test of the possibility that p53 was a target of the deletions, the p53 coding regions from two tumors were analyzed; these two tumors, like most colorectal carcinomas, had allelic deletions of chromosome 17p and expressed considerable amounts of p53 messenger RNA from the remaining allele. The remaining p53 allele was mutated in both tumors, with an alanine substituted for valine at codon 143 of one tumor and a histidine substituted for arginine at codon 175 of the second tumor. Both mutations occurred in a highly conserved region of the p53 gene that was previously found to be mutated in murine p53 oncogenes. The data suggest that p53 gene mutations may be involved in colorectal neoplasia, perhaps through inactivation of a tumor suppressor function of the wild-type p53 gene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.