[1] A framework is developed for characterizing the temporal inequality of stream discharge and solute loads to receiving waters using Lorenz diagrams and the associated Gini coefficient, G. These descriptors are used to illustrate a broad range of observed flow variability with a synthesis of multidecadal flow data from 22 rivers in Florida. Multidecadal phosphorus load data from four of the primary tributaries to Lake Okeechobee, Florida, and sodium and nitrate load data from nine of the Hubbard Brook, New Hampshire, long-term study site catchments are used to examine the relation between the inequality of flow and load. The intra-annual loads to Lake Okeechobee are shown to be highly unequal, such that 90% of the annual load is delivered in as little as 15% of the time. Analytic expressions are developed for measures of inequality in terms of parameters of the lognormal distribution under general conditions that include periods of zero flow. In cases where variability of concentrations is low compared to that of flows (chemostatic conditions), such as for phosphorus in the Lake Okeechobee basin and sodium in Hubbard Brook, the temporal inequality of flow is a strong surrogate for load inequality. However, in cases where variability of concentrations is high compared to that of flows (chemodynamic conditions), such as for nitrate in the Hubbard Brook catchments, load inequality is greater than flow inequality. The measured degree of correspondence between flow and load inequality for these data sets is shown to be well described using the general inequality framework introduced here.
As invasive species become increasingly abundant in forests, their presence may influence a number of key nutrient cycling processes. For example, Chinese privet has become well established in southeastern forests and continues to spread. Two studies, a multisite field investigation and a controlled approach on a single site, were conducted to examine the role of Chinese privet (Ligustrum sinense) on decomposition within riparian forests of the Georgia Piedmont. The field study also investigated the effects of privet presence on soil nitrogen (N) mineralization and microbial carbon and N immobilization. Both studies utilized a litterbag approach to examine how increasing proportions of privet in foliar litter influenced mass loss rates and nutrient dynamics. The field investigation included litterbags with representative proportions of the five dominant species from 16 sites. Litterbags in the controlled study were composed of specific levels of privet litter within bags (0, 10, 20, 30, 40, and 50% Chinese privet) as treatments. The litter quality of four native species was compared to Chinese privet in the controlled study. Both studies showed significant positive relationships between percentage of Chinese privet in litterbags and decomposition rates (2.6-fold rate increase with 30% privet in litterfall). Chinese privet leaf litter had lower lignin and cellulose concentrations, higher N concentrations, lower lignin : N ratios, and narrower C : N ratios than the native species. The positive relationship between mass loss rates and the proportion of Chinese privet in litter indicates that Chinese privet enhances decomposition rates as it becomes more abundant. During summer, N mineralization showed approximately a fivefold increase; during winter, microbial biomass N increased by approximately 30% on sites with the highest levels of privet in the understory. Consequently, C and N dynamics in Piedmont riparian forests were significantly influenced in direct proportion to the amount of privet present in the understory.
Naturally high total dissolved solids and upstream agricultural runoff often mask the influence of urban land cover on stream chemistry and biology. We examined the influence of headwater urbanization on the water chemistry, microbiology, and fish communities of the Big Brushy Creek watershed, a 96 km 2 drainage basin in the piedmont of South Carolina, USA. Concentrations of most major anions and cations (especially nitrate, sulfate, chloride, sodium, potassium, and calcium) were highest in the urban headwaters and decreased downstream. Generally, the highest concentrations of suspended coliform bacteria occurred in the urban headwaters. In contrast, stream habitat quality and the abundance, species richness, and species diversity of fishes did not differ significantly between urban and rural sites. Discharge of wastewater treatment plant effluent at one rural location caused an increase in concentrations of many solutes and possibly the abundance of benthic algae. We hypothesize that atmospheric dry deposition and domestic animal wastes are important sources of stream solutes and of coliform bacteria, respectively, in the urban headwaters. The lack of significant differences in fish abundance and diversity between urban and rural sites may indicate that urban development in the Big Brushy Creek watershed has not yet degraded habitat conditions greatly for stream fishes. Alternatively, agriculture or other land uses may have degraded stream habitat quality throughout the watershed prior to urbanization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.