A three-dimensional tungsten photonic crystal is experimentally realized with a complete photonic band gap at wavelengths λ⩾3 μm. At an effective temperature of 〈T〉∼1535 K, the photonic crystal exhibits a sharp emission at λ∼1.5 μm and is promising for thermal photovoltaic (TPV) power generation. Based on the spectral radiance, a proper length scaling and a planar TPV model calculation, an optical-to-electric conversion efficiency of ∼34% and electrical power of ∼14 W/cm2 is theoretically possible.
The increase in PGP showed that prescribing for generic preparations improved. Statistical quality control tests were useful in evaluating and tracking the results of the intervention, and were indispensable for monitoring and promptly detecting opportunities to improve prescribing behavior and take appropriate measures.
The main factors related to the efficiency of GPs prescription can be changed. The most important is the existence of PC. A lot of inter-consultations and working in a rural environment means worse general efficiency.
Thermophotovoltaics (TPV) converts the radiant energy of a thermal source into electrical energy using photovoltaic cells. TPV has a number of attractive features, including: fuel versatility (nuclear, fossil, solar, etc.), quiet operation, low maintenance, low emissions, light weight, high power density, modularity, and possibility for cogeneration of heat and electricity. Some of these features are highly attractive for military applications (Navy and Army). TPV could also be used for distributed power and automotive applications wherever fuel cells, microturbines, or cogeneration are presently being considered if the efficiencies could be raised to around 30%.This proposal primarily examine approaches to improving the radiative efficiency. The ideal irradiance for the PV cell is monochromatic illumination at the bandgap. The photonic crystal approach allows for the tailoring of thermal emission spectral bandwidth 4 at specific wavelengths of interest. The experimental realization of metallic photonic crystal structures, the optical transmission, reflection and absorption characterization of it have all been carried out in detail and will be presented next. Additionally, comprehensive models of TPV conversion has been developed and applied to the metallic photonic crystal system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.