The ability to prepare and develop novel pre-concentration media by the sol-gel process, and their integration with mid-infrared transparent waveguides has been demonstrated. This research approach resulted in a mid-infrared sensing methodology in which the properties (porosity, functionality, polarity, etc.) of the recognition layer could be tailored by variation of the sol-gel precursors and processing conditions. Cross-linker type and concentration notably influenced p-xylene absorption and diffusion rate. Unreacted silanol groups appeared to be the dominant factor in the hydrophobicity of sol-gel layers. Variation of sol-gel precursors and thermal treatment altered both film cross-link density and polarity, as demonstrated by variation in the rate of analyte diffusion and equilibrium analyte concentration. The use of a novel 1 : 1 PTMOS : DPDMS material as pre-concentration medium in this analytical sensing approach was validated through the determination of p-nitrochlorobenzene in an aqueous environment. The response demonstrated linearity between 0-30 mg L(-1) with a correlation coefficient of 0.989 and a limit of detection of 0.7 mg L(-1). Sensing times for p-nitrochlorobenzene were also reduced from several hours to 24 minutes, without loss of measurement accuracy or sensitivity, by a 10 degrees C increase in the sensing temperature and the use of a predictive Fickian model previously developed by this research group.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.