A vital element of widespread patient monitoring is consistency in transmission between the patients and the healthcare professionals not including time and position dependencies. Artificial intelligence (AI) and machine learning (ML) techniques have a vast possibility to proficiently handle the automated function of the mobile nodes distributed in the Mobile ad-hoc network (MANET). ML is a part of AI in that the computer algorithms learn themselves by improving from historical experiences. The main issues in MANET are autonomous operation, maximization of a lifetime, coverage of the network, energy utilization, connectivity issues, quality of service, high bandwidth necessity, communication protocol design, etc. ML is valuable for data aggregation, and it saves the energy of mobile nodes and enhances the network lifetime. In this paper, we propose an Artificial Intelligence Machine Learning Algorithm for improving the Quality of Service in MANET (AIMQ). ML techniques based on artificial neural networks (ANN) algorithm is helpful for data aggregation tasks. This approach formed the clusters by node mobility and connectivity. Glowworm Swarm Optimization (GSO) algorithm is applied in every cluster to choose a proficient Cluster Head (CH). Here, we choose the CH by GSO fitness function based on mobile node degree, node distance, node reliability, and energy. ANN algorithm recognizes and chooses the data aggregator with great energy and more extended stability. It updates the weight of input parameters such as node energy, node degree, packet loss ratio, and node delay to reduce the errors. It minimizes the repetitive CHs selection and member nodes’ re-affiliation in a cluster.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.