Well-ordered three-dimensional crystals of the large subunit of Bacillus stearothermophilus have been obtained. Electron micrographs of positively stained sections of these crystals revealed that the ribosomal particles are packed in several modes. Cell dimensions have been determined for 4 crystal forms. Representative electron micrographs, their optical diffraction patterns and their two-dimensional images are shown.
A systematic analysis of the parameters that control the crystal growth of the large subunit of ribosomes from B stearothermophilus has been carried out. Several parameters have been identified and classified according to their significance. It was found that only biologically active particles can crystallize and that the critical period for the crystallization process is the first few days, during which changes in the volume and content of the crystallization drop are of importance for both nucleation and crystal growth. Consequently, an experimental procedure for fine control of these variables has been developed. As a result of these studies, the reproducibility of crystal formation was increased, and larger and more stable crystals have been obtained.
An electron density map of the large ribosomal subunit from Bacillus stearothermophilus was obtained at 26 A resolution by single isomorphous replacement (SIR) from a derivative formed by specific quantitative labeling with a dense undecagold cluster. For derivatization, a monofunctional reagent of this cluster was bound to a sulfhydryl group of a purified ribosomal protein, which was in turn reconstituted with core particles of a mutant lacking this protein. The native, mutated, and derivatized 50S ribosomal subunits crystallize under the same conditions in the same space group. Under favorable conditions, crystals of the derivatized subunit proved to be isomorphous with the native ones, whereas the crystals of the mutant may have somewhat different packing. After resolving the SIR phase ambiguity by solvent flattening, the electron density shows a packing that is consistent with the noncrystallographic symmetry found by Patterson searches as well as with the motif observed in electron micrographs of thin sections of the crystals. These studies established that phase information can be obtained from heavy metal clusters, even when the crystals under investigation are unstable and weakly diffracting. These results encouraged further effort at the construction of specifically derivatized crystals from other ribosomal particles that diffract to higher resolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.