We propose optimization as a general paradigm for formalizing fairness in AI-based decision models. We argue that optimization models allow formulation of a wide range of fairness criteria as social welfare functions, while enabling AI to take advantage of highly advanced solution technology. We show how optimization models can assist fairness-oriented decision making in the context of neural networks, support vector machines, and rule-based systems by maximizing a social welfare function subject to appropriate constraints. In particular, we state tractable optimization models for a variety of functions that measure fairness or a combination of fairness and efficiency. These include several inequality metrics, Rawlsian criteria, the McLoone and Hoover indices, alpha fairness, the Nash and Kalai-Smorodinsky bargaining solutions, combinations of Rawlsian and utilitarian criteria, and statistical bias measures. All of these models can be efficiently solved by linear programming, mixed integer/linear programming, or (in two cases) specialized convex programming methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.