Objective While vascular dysfunction is well-defined in HF patients with reduced ejection fraction (HFrEF), disease-related alterations in the peripheral vasculature of HF patients with preserved ejection fraction (HFpEF) are not well characterized. Thus, we sought test the hypothesis that HFpEF patients would demonstrate reduced vascular function, at both the conduit artery and microvascular levels, compared to controls. Methods We examined both conduit artery function via brachial artery flow-mediated dilation (FMD) and microvascular function via reactive hyperemia (RH) following 5 min of ischemia in 24 Class II–IV HFpEF patients and 24 healthy controls matched for age, sex, and brachial artery diameter. Results FMD was reduced in HFpEF patients compared to controls (HFpEF: 3.1 ± 0.7%; Controls: 5.1 ± 0.5%; P = 0.03). However, shear rate at time of peak brachial artery dilation was lower in HFpEF patients compared to controls (HFpEF: 42,070 ± 4,018 s−1; Controls: 69,018 ± 9,509 s−1; P = 0.01), and when brachial artery FMD was normalized for the shear stimulus, cumulative area-under-the-curve (AUC) at peak dilation, the between-group differences were eliminated (HFpEF: 0.11 ± 0.03 %/AUC; Controls: 0.09 ± 0.01 %/AUC; P = 0.58). RH, assessed as AUC, was lower in HFpEF patients (HFpEF: 454 ± 35 mL; Controls: 660 ± 63 mL; P < 0.01). Conclusions Collectively, these data suggest that maladaptations at the microvascular level contribute to the pathophysiology of HFpEF, while conduit artery vascular function is not diminished beyond that which occurs with healthy aging.
To better characterize the contribution of both central and peripheral mechanisms to passive limb movement-induced hyperemia, we studied nine recent (<2 yr) heart transplant (HTx) recipients (56 ± 4 yr) and nine healthy controls (58 ± 5 yr). Measurements of heart rate (HR), stroke volume (SV), cardiac output (CO), and femoral artery blood flow were recorded during passive knee extension. Peripheral vascular function was assessed using brachial artery flow-mediated dilation (FMD). During passive limb movement, the HTx recipients lacked an HR response (0 ± 0 beats/min, Δ0%) but displayed a significant increase in CO (0.4 ± 0.1 l/min, Δ5%) although attenuated compared with controls (1.0 ± 0.2 l/min, Δ18%). Therefore, the rise in CO in the HTx recipients was solely dependent on increased SV (5 ± 1 ml, Δ5%) in contrast with the controls who displayed significant increases in both HR (6 ± 2 beats/min, Δ11%) and SV (5 ± 2 ml, Δ7%). The transient increase in femoral blood volume entering the leg during the first 40 s of passive movement was attenuated in the HTx recipients (24 ± 8 ml) compared with controls (93 ± 7 ml), whereas peripheral vascular function (FMD) appeared similar between HTx recipients (8 ± 2%) and controls (6 ± 1%). These data reveal that the absence of an HR increase in HTx recipients significantly impacts the peripheral vascular response to passive movement in this population and supports the concept that an increase in CO is a major contributor to exercise-induced hyperemia.
Background Peripheral endothelial function is recognized to be impaired in patients with heart failure with reduced ejection fraction (HFrEF), but the peripheral vascular effects of continuous-flow left ventricular assist device (LVAD) implantation, now employed as either a bridge-to-transplantation or as a destination therapy, remain unclear. Using flow-mediated vasodilation (FMD) and reactive hyperemia (RH), this study aimed to provide greater insight into LVAD-induced changes in peripheral vascular function. Methods and Results Sixty-eight subjects (13 New York Heart Association (NYHA) Class II HFrEF patients, 19 NYHA Class III/IV HFrEF patients, 20 NYHA Class III/IV HFrEF patients post-LVAD implantation, and 16 healthy age-matched controls) underwent FMD and RH testing in the brachial artery with blood flow velocity, artery diameters, and pulsatility index (PI) assessed by ultrasound Doppler. PI was significantly lower in the LVAD group (2.0 ± 0.4) compared to both the HFrEF II, (8.6 ± 0.8) and HFrEF III/IV (8.1 ± 0.9) patients, who, in turn, were significantly lower than the controls (12.8 ± 0.9). Likewise, LVAD %FMD/shear rate (0.09 ± 0.01 %Δ/s−1) was significantly reduced compared to all other groups (controls, 0.24 ± 0.03; HFrEF II, 0.17 ± 0.02 and HFrEF III/IV, 0.13 ± 0.02 %Δ/s−1) and %FMD/shear rate was significantly correlated with PI (r=0.45). RH was unremarkable across groups. Conclusions Although central hemodynamics are improved in patients with HFrEF by a continuous-flow LVAD, peripheral vascular function is further compromised, likely due, at least in part, to the reduction in pulsatility that is a characteristic of such a mechanical assist device.
Background Survival of patients on left ventricular assist devices (LVADs) has improved. We examined the differences in risk of adverse outcomes between LVAD-supported and medically managed candidates on the heart transplant waiting list. Methods and Results We analyzed mortality and morbidity in 33 073 heart transplant candidates registered on the United Network for Organ Sharing (UNOS) waiting list between 1999 and 2011. Five groups were selected: patients without LVADs in urgency status 1A, 1B, and 2; patients with pulsatile-flow LVADs; and patients with continuous-flow LVADs. Outcomes in patients requiring biventricular assist devices, total artificial heart, and temporary VADs were also analyzed. Two eras were defined on the basis of the approval date of the first continuous-flow LVAD for bridge to transplantation in the United States (2008). Mortality was lower in the current compared with the first era (2.1%/mo versus 2.9%/mo; P<0.0001). In the first era, mortality of pulsatile-flow LVAD patients was higher than in status 2 (hazard ratio [HR], 2.15; P<0.0001) and similar to that in status 1B patients (HR, 1.04; P=0.61). In the current era, patients with continuous-flow LVADs had mortality similar to that of status 2 (HR, 0.80; P=0.12) and lower mortality compared with status 1A and 1B patients (HR, 0.24 and 0.47; P<0.0001 for both comparisons). However, status upgrade for LVAD-related complications occurred frequently (28%) and increased the mortality risk (HR, 1.75; P=0.001). Mortality was highest in patients with biventricular assist devices (HR, 5.00; P<0.0001) and temporary VADs (HR, 7.72; P<0.0001). Conclusions Mortality and morbidity on the heart transplant waiting list have decreased. Candidates supported with contemporary continuous-flow LVADs have favorable waiting list outcomes; however, they worsen significantly once a serious LVAD-related complication occurs. Transplant candidates requiring temporary and biventricular support have the highest risk of adverse outcomes. These results may help to guide optimal allocation of donor hearts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.