Measurements consisting of γ-ray excitation functions and angular distributions have been performed using the (n, n ′ γ) reaction on 62 Ni. The excitation function data allowed us to check the consistency of the placement of transitions in the level scheme. From γ-ray angular distributions, the lifetimes of levels up to ∼ 3.8 MeV in excitation energy have been extracted with the Doppler-shift attenuation method. The experimentally deduced values of reduced transition probabilities have been compared with the predictions of the quadrupole vibrator model and with large-scale shell model calculations in the f p shell configuration space. Two-phonon states have been found to exist with some notable deviation from the predictions of the quadrupole vibrator model, but no evidence for the existence of three-phonon states could be established. Z = 28 proton core excitations play a major role in understanding the observed structure.
The levels in 26 Na with single particle character have been observed for the first time using the d( 25 Na,pγ) reaction at 5 MeV/nucleon. The measured
We report a precise determination of the 19 Ne half-life to be T 1/2 = 17.262 ± 0.007 s. This result disagrees with the most recent precision measurements and is important for placing bounds on predicted right-handed interactions that are absent in the current Standard Model. We are able to identify and disentangle two competing systematic effects that influence the accuracy of such measurements. Our findings prompt a reassessment of results from previous high-precision lifetime measurements that used similar equipment and methods.PACS numbers: 24.80.+y, 27.20.+n, 12.15.Hh, 29.40.Mc Precise measurements of decay rates and angular correlations in semi-leptonic processes are known to be excellent probes for interactions that are predicted by extensions of the Standard Model [1]. For example, the measured lifetime and electron asymmetry in neutron β decay [2] are used to probe for right-handed currents and obtain a precise value of V ud , the up-down element of the Cabibbo-Kobayashi-Maskawa quark-mixing matrix, in a relatively simple system that is free of nuclear structure effects. However, in spite of this compelling advantage, precision neutron β decay experiments are challenging. Current results from independent neutron decay measurements show large discrepancies that need to be addressed before conclusive interpretations can be made from the data [2]. In this regard Nature offers a fortuitous alternative in 19
Excited states in ;{152}Sm have been investigated with the ;{152}Sm(n,n;{'}gamma) reaction. The lowest four negative-parity band structures have been characterized in detail with respect to their absolute decay properties. Specifically, a new K;{pi} = 0;{-} band has been assigned with its 1;{-} band head at 1681 keV. This newly observed band has a remarkable similarity in its E1 transition rates for decay to the first excited K;{pi} = 0;{+} band at 684 keV to the lowest K;{pi} = 0;{-} band and its decay to the ground-state band. Based on these decay properties, as well as energy considerations, this new band is assigned as a K;{pi} = 0;{-} octupole excitation based on the K;{pi} = 0_{2};{+} state. An emerging pattern of repeating excitations built on the 0_{2};{+} level similar to those built on the ground state may indicate that ;{152}Sm is a complex example of shape coexistence rather than a critical point nucleus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.