This paper presents the comparative study of the mechanical properties of Al6061-Tungsten carbide composites containing Tungsten carbide (WC) particulate, and Al6061-graphite particulate composites containing graphite particles. The reinforcing particulates in the MMCs vary from 0% to 4% by weight. The 'vortex method' of production was employed to fabricate the composites, in which the reinforcements were poured into the vortex created by stirring the molten metal by means of a mechanical agitator. The composites so produced were subjected to a series of tests. The results of this study revealed that as the Tungsten carbide particle content was increased, there were significant increases in the ultimate tensile strength, hardness and Young's modulus, accompanied by a reduction in its ductility. There was, however, only a very marginal increase in the compressive strength, where as in graphite reinforced composites as the graphite content was increased, there were significant reduction in hardness and monotonic increases in the ductility, ultimate tensile strength (UTS), compressive strength and Young's modulus of the composite, An attempt is made in the paper to provide explanations for these phenomena.
The aim of this present investigation is to carry out a comparative study of the mechanical properties of AL6061/Albite composites containing albite(NaAlSi 3 O 8) particulates, which are naturally occurring plagioclase feldspar and AL6061/graphite particulate composites containing graphite particles. The reinforcing particulates in the MMC's vary from 0% to 4% by weight. The 'vortex method' of production was employed to fabricate the composites, in which the reinforcements were poured into the vortex created by stirring the molten metal by means of a mechanical agitator. The composites so produced were subjected to a series of tests.
Usage of synthetic fiber reinforced composites has increased rapidly because of their excellent properties such that it acts as a replacement for metals in the recent days. The physical and wear properties of Ultra-High Molecular Weight Polyethylene (UHMWPE) fabric reinforced epoxy composites have been studied in this present work. Using pin-on-disc test rig, dry-sliding wear of test specimens have been tested against disc of EN31 steel material. The plain woven bi-directional 200gsm and 240gsm UHMWPE fabric reinforced epoxy composites were fabricated by hand lay-up method at room temperature. All the tests were conducted as per the Taguchi’s L9 orthogonal-array. The process parameters considered in the present study is load, sliding velocity and sliding time with three levels each. Specific wear rate is considered as the response variable. Optimization is carried out to find best combination of parameters on specific wear rate. From the results, it is evident that load has greater influence on specific wear rate than other two considered parameters. Scanning Electron Microscopy (SEM) analysis was also carried out to examine the matrix distribution over fabric (reinforcement) and also their bonding between reinforcement and matrix.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.