The primary determinant for telomere replication is the enzyme telomerase, responsible for elongating the G-rich strand of the telomere. The only component of this enzyme that has been identified in Saccharomyces cermzsiae is the TLC1 gene, encoding the telomerase RNA subunit. However, a yeast strain defective for the EST1 gene exhibits the same phenotypes (progressively shorter telomeres and a senescence phenotype) as a strain deleted for TLC1, suggesting that EST1 encodes either a component of telomerase or some other factor essential for telomerase function. We designed a multitiered screen that led to the isolation of 22 mutants that display the same phenotypes as est1 and tlc1 mutant strains. These mutations mapped to four complementation groups: the previously identified EST1 gene and three additional genes, called EST2, EST3 and EST4. Cloning of the EST2 gene demonstrated that it encodes a large, extremely basic novel protein with no motifs that provide clues as to function. Epistasis analysis indicated that the four EST genes function in the same pathway for telomere replication as defined by the TLC1 gene, suggesting that the EST genes encode either components of telomerase or factors that positively regulate telomerase activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.