Trapping a Rydberg atom close to a surface is an important step towards the realisation of many proposals of quantum information or hybrid quantum systems. One of the challenges in these experiments is to overcome the electric field emanating from contaminations on the surface. Here we report on measurements of an electric field created by 87 Rb atoms absorbed on a 25 nm thick layer of SiO 2 , covering a 90 nm layer of Au. The electric field is measured using a two-photon transition to the 23D 5/2 and 25S 1/2 state. The electric field value that we measure is higher than typical values measured above metal surfaces, but is consistent with other measurements above SiO 2 surfaces. In addition, we measure the temporal behaviour of the field and observe that we can reduce it in a single experimental cycle, using UV light or by mildly heating the surface, whereas the buildup of the field takes thousands of cycles. We explain these results by a change in the ad-atoms distribution on the surface. These results indicate that the stray electric field can be reduced, opening new possibilities for experiments with trapped Rydberg atoms near surfaces. † Present address: CQ Center for Collective Quantum Phenomena and Their Applications,
We observe a density-dependent collective suppression of optical pumping between the hyperfine ground states in an array of submicrometer-sized clouds of dense and cold rubidium atoms. The suppressed Raman transition rate can be explained by strong resonant dipole-dipole interactions that are enhanced by increasing atom density, and are already significant at densities of 0.1k 3 , where k denotes the resonance wavenumber. The observations are consistent with stochastic electrodynamics simulations that incorporate the effects of population transfer via internal atomic levels embedded in a coupled-dipole model.
We address the technical challenges when performing quantum information experiments with ultracold Rydberg atoms in lattice geometries. We discuss the following key aspects: (i) The coherent manipulation of atomic ground states, (ii) the coherent excitation of Rydberg states, and (iii) spatial addressing of individual lattice sites. We briefly review methods and solutions which have been successfully implemented, and give examples based on our experimental apparatus. This includes an optical phase-locked loop, an intensity and frequency stabilization setup for lasers, and a nematic liquid-crystal spatial light modulator. a
We explore the possibility to trap Rydberg atoms in tightly confining magnetic microtraps. The trapping frequencies for Rydberg atoms are expected to be influenced strongly by magnetic field gradients. We show that there are regimes where Rydberg atoms can be trapped. Moreover, we show that so-called magic trapping conditions can be found for certain states of rubidium, where both Rydberg atoms and ground state atoms have the same trapping frequencies. Magic trapping is highly beneficial for implementing quantum gate operations that require long operation times.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.