During the last few years the developments in the field of III–nitrides have been spectacular. High quality epitaxial layers can now be grown by MOVPE. Recently good quality epilayers have also been grown by MBE. Considerable work has been done on dislocations, strain, and critical thickness of GaN grown on different substrates. Splitting of valence band by crystal field and by spin-orbit interaction has been calculated and measured. The measured values agree with the calculated values. Effects of strain on the splitting of the valence band and on the optical properties have been studied in detail. Values of band offsets at the heterointerface between several pairs of different nitrides have been determined. Extensive work has been done on the optical and electrical properties. Near band-edge spectra have been measured over a wide range of temperatures. Free and bound exciton peaks have been resolved. Valence band structure has been determined using the PL spectra and compared with the theoretically calculated spectra. Strain and its effect on the optical properties of the III–nitride layers have been studied both theoretically and experimentally. Both n and p conductivity have been achieved. InGaN quantum wells with GaN and AlGaN barriers and cladding layers have been investigated. PL of the quantum wells is affected by confinement effects, band filling, quantum confined Stark effect, and strain. This work has led to the fabrication of advanced optoelectronic and electronic devices. The light-emitting decodes emitting in the blue and green regions of the spectrum have been commercialized. The work leading to these developments is reviewed in this article. The device processing methods and actual devices are not discussed.
We present a unified model for thin film epitaxy where single crystal films with small and large lattice misfits are grown by domain matching epitaxy (DME). The DME involves matching of lattice planes between the film and the substrate having similar crystal symmetry. In this framework, the conventional lattice matching epitaxy becomes a special case where a matching of lattice constants or the same planes is involved with a small misfit of less than 7%–8%. In large lattice mismatch systems, we show that epitaxial growth of thin films is possible by matching of domains where integral multiples of major lattice planes match across the interface. We illustrate this concept with atomic-level details in the TiN/Si(100) with 3/4 matching, the AlN/Si(100)with 4/5 matching, and the ZnO/α−Al2O3(0001) with 6/7 matching of major planes across the film/substrate interface. By varying the domain size, which is equal to intregral multiple of lattice planes, in a periodic fashion, it is possible to accommodate additional misfit beyond perfect domain matching. Thus, we can potentially design epitaxial growth of films with any lattice misfit on a given substrate with atomically clean surfaces. In situ x-ray diffraction studies on initial stages of growth of ZnO films on sapphire correctly identify a compressive stress and a rapid relaxation within 1 to 2 monolayers, consistent with the DME framework and the fact that the critical thickness is less than 1 monolayer. DME examples ranging from the Ge–Si/Si(100) system with 49/50 matching (2% strain) to metal/Si systems with 1/2 matching (50% strain) are tabulated, strategies for growing strain-free films by engineering the misfit to be confined near the interface are presented, and the potential for epitaxial growth of films with any lattice misfit on a given substrate with atomically clean surfaces is discussed.
We have studied in detail the physical phenomena involved in the interaction of high-powered nanosecond excimer-laser pulses with bulk targets resulting in evaporation, plasma formation, and subsequent deposition of thin films. A theoretical model for simulating these laser-plasma-solid interactions has been developed. In this model, the laser-generated plasma is treated as an ideal gas at high pressure and temperature, which is initially confined in small dimensions, and is suddenly allowed to expand in vacuum. The three-dimensional expansion of this plasma gives rise to the characteristic spatial thickness and compositional variations observed in laser-deposited thin films of multicomponent systems. The forward-directed nature of the laser evaporation process has been found to result from anisotropic expansion velocities of the atomic species which are controlled by the dimensions of the expanding plasma. Based on the nature of interaction of the laser beam with the target and the evaporated material, the pulsed-laser evaporation (PLE) process can be classified into three separate regimes: (i) interaction of the laser beam with the bulk target, (ii) plasma formation, heating, and initial three-dimensional isothermal expansion, and (iii) adiabatic expansion and deposition of thin films. The first two processes occur during the time interval of the laser pulse, while the last process initiates after the laser pulse terminates. Under PLE conditions, the evaporation of the target is assumed to be thermal in nature, while the plasma expansion dynamics is nonthermal as a result of interaction of the laser beam with the evaporated material. The equations of compressible gas dynamics are set up to simulate the expansion of the plasma in the last two regimes. The solution of the gas-dynamics equations shows that the expansion velocities of the plasma are related to its initial dimensions and temperature, and the atomic weight of the species. Detailed simulations analyzing the salient features of the laser-deposition process have been carried out. The effects of various beam and substrate parameters including pulse energy density, substrate-target distance, irradiated spot size, and atomic mass of the species have been theoretically analyzed. This model predicts most of the characteristic experimental features of the laser evaporation and deposition of thin films. These characteristic features include (a) the effect of pulse energy density on atomic velocities, (b) the forward-directed nature of the deposit and its dependence on energy density, (c) spatial compositional variations in multicomponent thin films as a function of energy density, (d) dependence of the atomic velocities with atomic weights of various species in multicomponent films, (e) athermal non-Maxwellian-type velocity distribution of the atomic and molecular species, and (f) thickness and compositional variations as a function of substrate-target distance and irradiated spot size.
The optical and structural properties of high-quality single-crystal epitaxial MgZnO films deposited by pulsed-laser deposition were studied. In films with up to ∼36 at. % Mg incorporation, we have observed intense ultraviolet band edge photoluminescence at room temperature and 77 K. The highly efficient photoluminescence is indicative of the excitonic nature of the material. Transmission spectroscopy was used to show that the excitonic structure of the alloys was clearly visible at room temperature. High-resolution transmission electron microscopy, x-ray diffraction, and Rutherford backscattering spectroscopy/ion channeling were used to verify the epitaxial single-crystal quality of the films and characterize the defect content. Post-deposition annealing in oxygen was found to reduce the number of defects and to improve the optical properties of the films. These results indicate that MgZnO alloys have potential applications in a variety of optoelectronic devices.
The optical properties of high quality single crystal epitaxial zinc oxide thin films grown by pulsed laser deposition on c-plane sapphire substrates were studied. It was found that annealing the films in oxygen dramatically improved the optical and electrical properties. The absorption coefficient, band gap, and exciton binding energies were determined by transmission measurements and photoluminescence. In both the annealed and the as-deposited films excitonic absorption features were observed at both room temperature and 77 K. In the annealed films the excitonic absorption peaks were substantially sharper and deep level photoluminescence was suppressed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.