We use combined South Pole Telescope (SPT)+Planck temperature maps to analyze the circumgalactic medium (CGM) encompassing 138,235 massive, quiescent 0.5 ≤ z ≤ 1.5 galaxies selected from data from the Dark Energy Survey (DES) and Wide-Field Infrared Survey Explorer (WISE). Images centered on these galaxies were cut from the 1.85 arcmin resolution maps with frequency bands at 95, 150, and 220 GHz. The images were stacked, filtered, and fit with a graybody dust model to isolate the thermal Sunyaev–Zel’dovich (tSZ) signal, which is proportional to the total energy contained in the CGM of the galaxies. We separated these M ⋆ = 1010.9 M ⊙–1012 M ⊙ galaxies into 0.1 dex stellar mass bins, detecting tSZ per bin up to 5.6σ and a total signal-to-noise ratio of 10.1σ. We also detect dust with an overall signal-to-noise ratio of 9.8σ, which overwhelms the tSZ at 150 GHz more than in other lower-redshift studies. We corrected for the 0.16 dex uncertainty in the stellar mass measurements by parameter fitting for an unconvolved power-law energy-mass relation, E therm = E therm , peak M ⋆ / M ⋆ , peak α , with the peak stellar mass distribution of our selected galaxies defined as M ⋆,peak = 2.3 × 1011 M ⊙. This yields an E therm , peak = 5.98 − 1.00 + 1.02 × 10 60 erg and α = 3.77 − 0.74 + 0.60 . These are consistent with z ≈ 0 observations and within the limits of moderate models of active galactic nucleus feedback. We also computed the radial profile of our full sample, which is similar to that recently measured at lower-redshift by Schaan et al.
Motivated by observations of outflowing galaxies, we investigate the combined impact of magnetic fields and radiative cooling on the evolution of cold clouds embedded in a hot wind. We perform a collection of three-dimensional adaptive mesh refinement, magnetohydrodynamical simulations that span two resolutions, and include fields that are aligned and transverse to the oncoming, super-Alfvénic material. Aligned fields have little impact on the overall lifetime of the clouds over the non-magnetized case, although they do increase the mixing between the wind and cloud material by a factor of ≈ 3. Transverse fields lead to magnetic draping, which isolates the clouds, but they also squeeze material in the direction perpendicular to the field lines, which leads to rapid mass loss. A resolution study suggests that the magnetized simulations have somewhat better convergence properties than nonmagnetized simulations, and that a resolution of 64 zones per cloud radius is sufficient to accurately describe these interactions. We conclude that the combined effects of radiative cooling and magnetic fields are dependent on field orientation, but are unlikely to enhance cloud lifetimes beyond the effect of radiative cooling alone.
The Orion Star-forming Complex (OSFC) is a central target for the APOGEE-2 Young Cluster Survey. Existing membership catalogs span limited portions of the OSFC, reflecting the difficulty of selecting targets homogeneously across this extended, highly structured region. We have used data from wide-field photometric surveys to produce a less biased parent sample of young stellar objects (YSOs) with infrared (IR) excesses indicative of warm circumstellar material or photometric variability at optical wavelengths across the full 420 square degree extent of the OSFC. When restricted to YSO candidates with H<12.4, to ensure S/N∼100 for a six-visit source, this uniformly selected sample includes 1307 IR excess sources selected using criteria vetted by Koenig & Liesawitz (2014) and 990 optical variables identified in the Pan-STARRS1 3π survey: 319 sources exhibit both optical variability and evidence of circumstellar disks through IR excess. Objects from this uniformly selected sample received the highest priority for targeting, but required fewer than half of the fibers on each APOGEE-2 plate. We filled the remaining fibers with previously confirmed and new color-magnitude selected candidate OSFC members. Radial velocity measurements from APOGEE-1 and new APOGEE-2 observations taken in the survey's first year indicate that ∼90% of the uniformly selected targets have radial velocities consistent with Orion membership. The APOGEE-2 Orion survey will include >1100 bona fide YSOs whose uniform selection function will provide a robust sample for comparative analyses of the stellar populations and properties across all sub-regions of Orion.
We report three-dimensional hydrodynamical simulations of shocks (${\cal M_{\rm shock}}\ge 4$) interacting with fractal multicloud layers. The evolution of shock-multicloud systems consists of four stages: a shock-splitting phase in which reflected and refracted shocks are generated, a compression phase in which the forward shock compresses cloud material, an expansion phase triggered by internal heating and shock re-acceleration, and a mixing phase in which shear instabilities generate turbulence. We compare multicloud layers with narrow ($\sigma _{\rho }=1.9\bar{\rho }$) and wide ($\sigma _{\rho }=5.9\bar{\rho }$) log-normal density distributions characteristic of Mach ≈5 supersonic turbulence driven by solenoidal and compressive modes. Our simulations show that outflowing cloud material contains imprints of the density structure of their native environments. The dynamics and disruption of multicloud systems depend on the porosity and the number of cloudlets in the layers. ‘Solenoidal’ layers mix less, generate less turbulence, accelerate faster, and form a more coherent mixed-gas shell than the more porous ‘compressive’ layers. Similarly, multicloud systems with more cloudlets quench mixing via a shielding effect and enhance momentum transfer. Mass loading of diffuse mixed gas is efficient in all models, but direct dense gas entrainment is highly inefficient. Dense gas only survives in compressive clouds, but has low speeds. If normalised with respect to the shock-passage time, the evolution shows invariance for shock Mach numbers ≥10 and different cloud-generating seeds, and slightly weaker scaling for lower Mach numbers and thinner cloud layers. Multicloud systems also have better convergence properties than single-cloud systems, with a resolution of 8 cells per cloud radius being sufficient to capture their overall dynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.