Hollow-walled lattices are novel cellular materials with lower densities than conventional dense-walled lattices. However, their manufacturability by laser powder bed fusion (LPBF) is not yet established. This study investigates the LPBF manufacturability of Ti-6Al-4V hollow-walled struts with respect to strut outer diameter, wall thickness (controlled by laser scan path), and inclination angle, while the strut length is purposely limited to 10-15 mm, typical of lattice unit dimensions. The manufacturability was reliable for outer diameters exceeding 0.5 mm and wall thicknesses exceeding 0.24 mm over the inclines of 22.5°-90°. To ensure a manufacturable hollow cylindrical channel by LPBF, we recommend a minimum inner diameter of 4Dv(90) according to the feedstock powder size distribution. The average inconsistency of 5.13% between the designed and manufactured outer diameters was substantially lower than that achievable by conventional manufacturing. The findings of this study provide necessary guidance for the future manufacture of hollowwalled lattices by LPBF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.