Flow of fluids subjected to thermal radiation has enormous application in polymer processing, glass blowing, cooling of nuclear reactant and harvesting solar energy. This paper considers the MHD stagnation point flow of non-Newtonian pseudoplastic Williamson fluid induced by buoyancy in the presence of thermal radiation. A system of nonlinear partial differential equations suitable to describe the MHD stagnation point flow of Williamson fluid over a stretching sheet is formulated and then transformed using similarity variables to boundary value ordinary differential equations. The graphs depicting the effect of thermal radiation parameter, buoyancy and electromagnetic force on the fluid velocity and temperature of the stagnation point flow are given and the results revealed that increase in buoyancy leads to an increase in the overall velocity of the flow but a decrease in the temperature of the flow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.