Persistent environmental contaminants may enter agricultural fields via the application of sewage sludge, by irrigation with treated municipal wastewater or by manuring. It has been shown that such contaminants can be incorporated into crop plants. The metabolism of the bacteriostatic agents triclocarban, triclosan, and its transformation product methyl triclosan was investigated after their uptake into carrot cell cultures. A fast metabolization of triclosan was observed and eight so far unknown phase II metabolites, conjugates with saccharides, disaccharides, malonic acid, and sulfate, were identified by liquid chromatography-mass spectrometry. Triclocarban and methyl triclosan lack a phenolic group and remained unaltered in the cell cultures. Phase I metabolization was not observed for any of the compounds. All eight triclosan conjugates identified in the cell cultures were also detected in extracts of intact carrot plants cultivated on triclosan contaminated soils. Their total amount in the plants was assessed to exceed the amount of the triclosan itself by a factor of 5. This study shows that a disregard of conjugates in studies on plant uptake of environmental contaminants may severely underestimates the extent of uptake into plants and, eventually, the potential human exposure to contaminants via food of plant origin.
Chitosan is a major structural component of fungal cell walls and has diverse medical and other applications. However, cost‐effective culture and extraction methods for fungi need to be developed. Therefore, Mucor rouxii was grown on YPG‐media in both submerged batch and semi‐continuous cultures. Chitosan was extracted from the mycelia to explore strategies to enhance yields and production rates. As observed in earlier studies, M. rouxii is able to adapt to shear stress when cultured semi‐continuously. Modeling the hyphal growth of batch experiments shows that the mycelia were ruptured by shear forces within a short cultivation time shown by a decreased hyphal length. However, an increasing chitosan content was observed with an increasing cultivation period in semi‐continuous cultures, which is an indication for the adaption to shear stress. Semi‐continuous culture resulted in the highest contents of extractable chitosan. The results and models of hyphal growth, including tip extension and branching, suggest that repeated batch cultures may be optimal for chitosan production.
Eigene Untersuchungen zeigen, dass Chitosan aus verschiedenen Pilzmycelien, die als Restprodukte bei biotechnologischen Prozessen anfallen, gewonnen werden kann. Unter gewissen Umständen kann sogar ein Fermentationsprozess beim Einsatz von Dünnschlempe rentabel sein. Im Vergleich zum Krabbenchitosan können bei der fermentativen Herstellung von Chitosan Aufarbeitungsschritte bei dennoch bedeutend höherer Ausbeute eingespart werden. Analysen ergaben, dass pilzliches Chitosan zum Krabbenchitosan einen vergleichbaren Deacetylierungsgrad hat, kein Protein sowie keine Schwermetalle enthält, jedoch ein sehr niedriges Molgewicht aufweist. Auf Grund dieser Eigenschaften ist es für eine Anwendung in der Medizin und Pharmazie, in der Kosmetikindustrie sowie in der Lebensmittelindustrie sehr gut geeignet.
Downstream processing of chitosan requires several technological steps that contribute to the total production costs. Precipitation and especially evaporation are energy-consuming processes, resulting in higher costs and limiting industrial scale production. This study investigated the filtration kinetics of chitosan derived from cell walls of fungi and from exoskeletons of arthropods by electrofiltration, an alternative method, thus reducing the downstream processing steps and costs. Experiments with different voltages and pressures were conducted in order to demonstrate the effect of both parameters on filtration kinetics. The concentration of the biopolymer was obtained by the average factor of 40 by applying an electric field of 4 V/mm and pressure of 4 bars. A series of analytical experiments demonstrated the lack of structural and functional changes in chitosan molecules after electrofiltration. These results, combined with the reduction of energy and processing time, define the investigated method as a promising downstream step in the chitosan production technology.
In der Natur konnte Chitosan bisher nur in den Zellwänden weniger Pilze (z. B. Mucorales) gefunden werden. Auf Grund struktureller Eigenschaften, der geringen Toxizität, Biokompatibilität und biologischen Abbaubarkeit besitzt Chitosan ein breites Anwendungspotenzial. Wegen entfallender Entsorgungs‐ und Umweltprobleme ist es zusätzlich als Rohstoff attraktiv. Chitosan wird bisher aus Chitin gewonnen, das überwiegend aus Schalenresten der Krabben‐ und Shrimpsherstellung stammt. Eigene Untersuchungen zeigen, dass sich Chitosan aus verschiedenen Pilzmycelien, die als Restprodukte bei biotechnologischen Prozessen (Enzymproduktion, Bierbrauerei) anfallen, besonders günstig gewinnen und aufarbeiten ließe. Unter Umständen ist sogar ein Fermentationsprozess mit Zygomycota rentabel, weil in der Zellwand dieser filamentösen Pilze bereits Chitosan in vivo enthalten ist und so auf den Aufarbeitungsschritt der Deacetylierung verzichtet werden kann. Analysen ergaben, dass Chitosan aus Pilzmycelien gleiche Eigenschaften wie Krabbenchitosan hinsichtlich des Deacetylierungsgrades und der Wasserlöslichkeit bei weniger Aufarbeitungsschritten zeigt. Außerdem lässt es sich protein‐ und schwermetallfrei herstellen, was für Anwendungen im medizinischen Bereich besonders wichtig ist.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.