The He I λ10833 Å triplet is a powerful tool for characterising the upper atmosphere of exoplanets and tracing possible mass loss. Here, we analysed one transit of GJ 1214 b observed with the CARMENES high-resolution spectrograph to study its atmosphere via transmission spectroscopy around the He I triplet. Although previous studies using lower resolution instruments have reported non-detections of He I in the atmosphere of GJ 1214 b, we report here the first potential detection. We reconcile the conflicting results arguing that previous transit observations did not present good opportunities for the detection of He I, due to telluric H2O absorption and OH emission contamination. We simulated those earlier observations, and show evidence that the planetary signal was contaminated. From our single non-telluric-contaminated transit, we determined an excess absorption of 2.10−0.50+0.45% (4.6 σ) with a full width at half maximum (FWHM) of 1.30−0.25+0.30 Å. The detection of He I is statistically significant at the 4.6 σ level, but repeatability of the detection could not be confirmed due to the availability of only one transit. By applying a hydrodynamical model and assuming an H/He composition of 98/2, we found that GJ 1214 b would undergo hydrodynamic escape in the photon-limited regime, losing its primary atmosphere with a mass-loss rate of (1.5–18) × 1010 g s−1 and an outflow temperature in the range of 2900–4400 K. Further high-resolution follow-up observations of GJ 1214 b are needed to confirm and fully characterise the detection of an extended atmosphere surrounding GJ 1214 b. If confirmed, this would be strong evidence that this planet has a primordial atmosphere accreted from the original planetary nebula. Despite previous intensive observations from space- and ground-based observatories, our He I excess absorption is the first tentative detection of a chemical species in the atmosphere of this benchmark sub-Neptune planet.
Context. The NASA mission TESS is currently doing an all-sky survey from space to detect transiting planets around bright stars. As part of the validation process, the most promising planet candidates need to be confirmed and characterized using follow-up observations. Aims. In this article, our aim is to confirm the planetary nature of the transiting planet candidate TOI-674b using spectroscopic and photometric observations. Methods. We use TESS, Spitzer, ground-based light curves, and HARPS spectrograph radial velocity measurements to establish the physical properties of the transiting exoplanet candidate TOI-674b. We perform a joint fit of the light curves and radial velocity time series to measure the mass, radius, and orbital parameters of the candidate. Results. We confirm and characterize TOI-674b, a low-density super-Neptune transiting a nearby M dwarf. The host star (TIC 158588995, V = 14.2 mag, J = 10.3 mag) is characterized by its M2V spectral type with M⋆ = 0.420 ± 0.010 M⊙, R⋆ = 0.420 ± 0.013 R⊙, and Teff = 3514 ± 57 K; it is located at a distance d = 46.16 ± 0.03 pc. Combining the available transit light curves plus radial velocity measurements and jointly fitting a circular orbit model, we find an orbital period of 1.977143 ± 3 × 10−6 days, a planetary radius of 5.25 ± 0.17 R⊕, and a mass of 23.6 ± 3.3 M⊕ implying a mean density of ρp =0.91 ± 0.15 g cm−3. A non-circular orbit model fit delivers similar planetary mass and radius values within the uncertainties. Given the measured planetary radius and mass, TOI-674b is one of the largest and most massive super-Neptune class planets discovered around an M-type star to date. It is found in the Neptunian desert, and is a promising candidate for atmospheric characterization using the James Webb Space Telescope.
Ultra-hot Jupiters are highly irradiated gas giants with equilibrium temperatures typically higher than 2000 K. Atmospheric studies of these planets have shown that their transmission spectra are rich in metal lines, with some of these metals being ionised due to the extreme temperatures. Here, we use two transit observations of WASP-76b obtained with the CARMENES spectrograph to study the atmosphere of this planet using high-resolution transmission spectroscopy. Taking advantage of the two channels and the coverage of the red and near-infrared wavelength ranges by CARMENES, we focus our analysis on the study of the Ca II infrared triplet (IRT) at 8500 Å and the He I triplet at 10 830 Å. We present the discovery of the Ca II IRT at 7σ in the atmosphere of WASP-76b using the cross-correlation technique, which is consistent with previous detections of the Ca II H&K lines in the same planet, and with the atmospheric studies of other ultra-hot Jupiters reported to date. The low mass density of the planet, and our calculations of the XUV (X-ray and EUV) irradiation received by the exoplanet, show that this planet is a potential candidate to have a He I evaporating envelope and, therefore, we performed further investigations focussed on this aspect. The transmission spectrum around the He I triplet shows a broad and red-shifted absorption signal in both transit observations. However, due to the strong telluric contamination around the He I lines and the relatively low signal-to-noise ratio of the observations, we are not able to unambiguously conclude if the absorption is due to the presence of helium in the atmosphere of WASP-76b, and we consider the result to be only an upper limit. Finally, we revisit the transmission spectrum around other lines such as Na I, Li I, Hα, and K I. The upper limits reported here for these lines are consistent with previous studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.