This long-awaited graduate textbook, written by two pioneers of the field, is the first to provide a comprehensive introduction to the observations, theories and consequences of stellar winds. The rates of mass loss and the wind velocities are explained from basic physical principles. This book also includes chapters clearly explaining the formation and evolution of interstellar bubbles, and the effects of mass loss on the evolution of high- and low-mass stars. Each topic is introduced simply to explain the basic processes and then developed to provide a solid foundation for understanding current research. This authoritative textbook is designed for advanced undergraduate and graduate students and researchers seeking an understanding of stellar winds and, more generally, supersonic flows from astrophysical objects. It is based on courses taught in Europe and the US over the past twenty years and includes seventy problems (with answers) for coursework or self-study.
We report on a 67 ks High-Energy Transmission Grating observation of the optically brightest early O star z Puppis (O4 f). Many resolved X-ray lines are seen in the spectra over a wavelength range of 5-25 Å . Chandra has sufficient spectral resolution to study the velocity structure of isolated X-ray line profiles and to distinguish the individual forbidden, intercombination, and resonance (fir) emission lines in several He-like ions, even where the individual components are strongly Doppler-broadened. In contrast to X-ray line profiles in other hot stars, z Pup shows blueshifted and skewed line profiles, providing the clearest and most direct evidence that the Xray sources are embedded in the stellar wind. The broader the line, the greater the blueward centroid shift tends to be. The N vii line at 24.78 Å is a special case, showing a flat-topped profile. This indicates that it is formed in regions beyond most of the wind attenuation. The sensitivity of the He-like ion fir lines to a strong UV radiation field is used to derive the radial distances at which lines of S xv, Si xiii, Mg xi, Ne ix, and O vii originate. The formation radii correspond well with a continuum optical depth of unity at the wavelength of each line complex, indicating that the X-ray line emission is distributed throughout the stellar wind. However, the S xv emission lines form deeper in the wind than expected from standard wind-shock models.
We present X-ray grating spectra of the recurrent nova RS Ophiuchi during its 2006 outburst, obtained with XMMNewton and Chandra. For the first month after optical maximum, the X-ray spectrum was hard and dominated by emission lines of H-like and He-like ions. The X-ray luminosity was 2:4 ; 10 36 ergs s À1 in the 0.33Y10 keV range. The spectra indicate a collisionally dominated plasma with a broad range of temperatures and an energy-dependent velocity structure. During an observation obtained in week 4, a soft X-ray flare occurred in which a new system of soft, higher velocity emission lines appeared in the spectrum. Then, during weeks 6Y10, the supersoft continuum of the hot white dwarf atmosphere was the dominant emission component. The X-ray luminosity reached at least 9 ; 10 37 ergs s À1 in the 0.2Y1 keV range, while the intrinsic nebular absorption decreased by a factor of 5 since the first observation. Preliminary model fitting indicates a white dwarf temperature of $800,000 K, and a mass of at least 1.2 M . Therefore, RS Oph may be an important Type Ia supernova progenitor. We show that the data are consistent with mass loss ending before day 54 of the outburst, and nuclear burning ending around day 69. A rapid decay in X-ray luminosity followed after week 10. The X-ray luminosity 5, 7, and 8 months after optical maximum dropped by more than 2 orders of magnitude. The spectra do not appear to be consistent with emission from an accretion disk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.