This work demonstrates a stand-alone power source that integrates a paper-based hydrogen fuel cell with a customized chemical heater that produces hydrogen in-situ upon the addition of a liquid. The presented approach operates by capillary action and takes advantage of the hydrogen released as a by-product of an exothermic reaction used in point-of-care diagnostics. The paperbased fuel cell produces a maximum power of 25.8 mW (103.2 mW cm -2 ), which is suitable for powering a diversity of electrical devices such as commercially available digital pregnancy tests and glucometers. While device shape and dimensions can be customized, here it is shown that the fuel cell can be designed in a compact form factor and footprint comparable to a lateral flow test while providing a remarkable power output. This approach holds great promise for powering portable diagnostics, as the generated electric power could enable device functionalities required for advanced assays, such as device timing, actuation, and signal quantification. Part of the same liquid sample that is to be analyzed (urine, saliva, water, etc) could be used to trigger the hydrogen generation and start the fuel cell operation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.