From the information contained in the (exact or approximate) first-order density matrix, we describe a method for extracting a unique set of atomic hybrids and bond orbitals for a given molecule, thereby constructing its "Lewis structure" in an a priori manner. These natural hybrids are optimal in a certain sense, are efficiently computed, and seem to agree well with chemical intuition (as summarized, for example, in Bent's Rule) and with hybrids obtained by other procedures. Using simple INDO-SCF-MO wave functions, we give applications of the natural hybrid orbital analysis to molecules exhibiting a variety of bonding features, including lone pairs, multiple bonds, strained rings, and "bent bonds", multiple resonance structures, hydrogen bonds, and three-center bonds. Three examples are described in greater detail: (i) "orbital following" during ammonia umbrella inversion, (ii) the dimerization of water molecules, and (iii) the hydrogen-bridged bonds of diborane.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.