The actions of prolactin (PRL) on target cells depend on the type of prolactin receptor (PRLr) predominantly expressed, particularly whether the long PRLr isoform is expressed. The aims of this study were to determine the cellular localization and the changes in expression of long and short PRLr isoforms in sheep ovary throughout the estrous cycle. Long and short PRLrs were localized mostly in the same ovarian cells. Maximum signal intensity, particularly for long PRLrs, was found in stromal cells surrounding primordial and primary follicles, and, for both PRLrs, in granulosa cells of preantral follicles and in luteal cells. Moderate signal intensity for PRLrs was found in theca cells of preantral to ovulatory follicles, and in granulosa cells of antral follicles up to the gonadotropin-dependent stage. Decreasing immunoreactivity to PRLrs was found in granulosa cells of gonadotropin-dependent to ovulatory follicles. For long PRLrs in particular, no signal was found in mural granulosa cells of gonadotropin-dependent follicles; for both isoforms, no signal was found in most granulosa cells of ovulatory follicles. In primordial to gonadotropin-dependent follicles, cellular localization of PRLr was similar on days 0, 10 and 15 of the cycle. Oocytes consistently showed positive immunostaining for PRLrs. Comparative RT-PCR analysis of long and short PRLr expression showed that the short isoform is evenly expressed throughout the estrous cycle, whereas the expression of the long form increases at the time of estrus and decreases at mid-luteal phase and at the onset of the follicular phase. Expression of long PRLrs was greater than that of short PRLrs on day 0 of cycle; expression of both isoforms was similar on day 10 and on day 15, long PRLrs expression was lower than that of short PRLrs. Our results indicate that in sheep ovary, the maximum responsiveness to PRL might occur during the preovulatory phase of the estrous cycle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.