Although the blockade of the hedgehog cascade by using cyclopamine has been reported to inhibit the growth of some cancer cell types, few studies on the mechanism by which this drug alone or in combination with other cytotoxic agents induces its cytotoxic effect have been reported. In our study, we evaluate, for the first time, the antiproliferative and cytotoxic effects induced by a combination of selective SMO inhibitor, cyclopamine and epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, gefitinib on metastatic prostate cancer (PC) cells. The results revealed that cyclopamine, alone or at a lower concentration in combination with gefitinib, inhibited the growth of sonic hedgehog-(SHH), epidermal growth factor-(EGF) and serum-stimulated androgensensitive LNCaP-C33 and LNCaP-LN3 and androgen-independent LNCaP-C81, DU145 and PC3 cells. The antiproliferative effect of cyclopamine and gefitinib, alone or in combination, was mediated via a blockade of the PC3 cells in the G1 phase of the cell cycle. Importantly, the combined cyclopamine and gefitinib also caused a higher rate of apoptotic death of PC cells compared to single agents. The cytotoxic effect induced by these drugs in PC3 cells appears to be mediated at least, in part, via the mitochondrial pathway through the depolarization of the mitochondrial membrane and the release of cytochrome c and reactive oxygen species into the cytosol. This was also accompanied by the activation of caspase cascades, PARP cleavage and DNA fragmentation. Additionally, the combined cyclopamine and gefitinib were more effective at suppressing the invasiveness of PC3 cells through matrigel in vitro as the drugs alone. These findings indicate that the simultaneous blockade of SHH-GLI-1 and EGF-EGFR signaling, which results in the growth arrest and massive rate of apoptotic cell death, represents a promising strategy for a more effective treatment of metastatic PC forms. ' 2005 Wiley-Liss, Inc.
The present study has been undertaken to establish the therapeutic benefit of co-targeting epidermal growth factor receptor (EGFR) and sonic hedgehog pathways by using gefitinib and cyclopamine, respectively, for improving the efficacy of the current chemotherapeutic drug, docetaxel, to counteract the prostate cancer (PC) progression from locally invasive to metastatic and recurrent disease stages. The data from immuofluorescence analyses revealed that EGFR/Tyr1173-pEGFR, sonic hedgehog ligand (SHH), smoothened co-receptor (SMO) and GLI-1 were co-localized with the CD133+ stem cell-like marker in a small subpopulation of PC cells. These signaling molecules were also present in the bulk tumor mass of CD133− PC cells with a luminal phenotype detected in patient’s adenocarcinoma tissues. Importantly, the results revealed that the CD133+/CD44high/AR−/low side population (SP) cell fraction endowed with a high self-renewal potential isolated from tumorigenic and invasive WPE1-NB26 cells by Hoechst dye technique was insensitive to current chemotherapeutic drug, docetaxel. In contrast, the docetaxel treatment induced significant anti-proliferative and apoptotic effects on the CD133−/CD44low/AR+ non-SP cell fraction isolated from WPE1-NB26 cell line. Of therapeutic interest, the results have also indicated that combined docetaxel, gefitinib and cyclopamine induced greater anti-proliferative and apoptotic effects on SP and non-SP cell fractions isolated from WPE1-NB26 cells than individual drugs or two-drug combinations. Altogether, these observations suggest that EGFR and sonic hedgehog cascades may represent the potential therapeutic targets of great clinical interest to eradicate the total PC cell mass and improve the current docetaxel-based therapies against locally advanced and invasive PCs, and thereby prevent metastases and disease relapse.
The epidermal growth factor receptor (EGFR) and hedgehog cascades provide a critical role in prostate cancer progression and contribute to the resistance to clinical therapies and disease relapse. Therefore, we evaluated, for the first time, the antiproliferative and cytotoxic effects induced by a combination of selective inhibitors of EGFR tyrosine kinase and smoothened hedgehog signaling element, gefitinib and cyclopamine, with a current chemotherapeutic drug used in the clinics, docetaxel, on some metastatic prostate cancer cell lines. Immunohistochemical analyses revealed that sonic hedgehog (SHH) expression was enhanced in 39% of primary prostatic adenocarcinomas (Gleason scores 4 -10) compared with the corresponding normal tissues of the same prostate gland from 32 prostate cancer patients. The confocal microscopy and Western blot analyses have also indicated the high expression levels of SHH and EGFR in metastatic LNCaP, DU145, and PC3 cells. Moreover, the results revealed that the drugs, alone or in combination, at lower concentrations inhibited the growth of EGF plus SHH -stimulated and serum-stimulated androgenresponsive LNCaP-C33 and androgen-independent LNCaP-C81, DU145, and PC3 cells. Importantly, the combined docetaxel, gefitinib, and cyclopamine also caused a higher rate of apoptotic death of prostate cancer cells compared with individual agents. The cytotoxic effects induced by these drugs in PC3 cells seem to be mediated in part through the cellular ceramide production and activation of caspase cascades via a mitochondrial pathway and the release of cytochrome c into the cytosol. Additionally, the combined agents were more effective at suppressing the invasiveness of PC3 cells through Matrigel in vitro than the single drugs. These findings indicate that the combined use of inhibitors of EGF-EGFR and hedgehog signaling with docetaxel could represent a more promising strategy for treatment in patients with metastatic and androgen-independent prostate cancer. [Mol Cancer Ther 2007;6(3):967-78]
In this study, we evaluated, for the first time, the antiproliferative and cytotoxic effects induced by a combination of a selective epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, gefitinib, with other chemotherapeutic drugs including estrogen receptor-beta (ER-b) antagonist (tamoxifen) and topoisomerase II inhibitor (etoposide) on some metastatic prostate cancer (PC) cell lines. Immunohistochemial analyses revealed that EGFR expression was enhanced in 38% of primary prostatic adenocarcinomas (Gleason scores 4-10) as compared to the corresponding normal tissues of the same prostate gland from 32 PC patients. The RT-PCR and Western blot data have also indicated the higher expression levels of EGFR and ER-b transcripts and proteins in metastatic LNCaP, DU145 and PC3 cells relative to nonmalignant normal prostate cells. Moreover, the results from MTT and FACS analyses revealed that the drugs, alone or in combination at lower concentrations, inhibited the growth of 17b-estradiol (E2) plus EGF and serum-stimulated androgen-responsive LNCaP-C33 and androgen-independent LNCaP-C81, DU145 and PC3 cells. Importantly, the combined gefitinib, tamoxifen and etoposide also caused a higher rate of apoptotic death of PC cells as compared to single agents. The cytotoxic effects induced by these drugs in PC3 cells appear to be mediated through the accumulation of cellular ceramide and activation of caspase cascades via a mitochondrial pathway. These findings indicate that the combined use of inhibitors of EGF-EGFR and E2-ER-b signaling with etoposide, which act by increasing the cellular ceramide levels and caspase activity, represents a promising strategy for a more effective treatment of metastatic PC forms. ' 2006 Wiley-Liss, Inc.Key words: prostate cancer; EGF-EGFR system; ER-b; growth inhibition; ceramide; apoptotic death Prostate cancer (PC) remains among the most frequently diagnosed solid tumors in men, and the metastatic PC forms still represent the second leading cause of cancer-related death.1,2 Although the treatment of PCs by radical prostatectomy, radiotherapy and antiandrogen therapy has a high curability rate in patients diagnosed with localized and androgen-dependent PCs, the progression to the hormone refractory prostate cancer (HRPC) forms is associated with disease relapse and poor patient survival.1-5 This is principally due to the androgen-independence of PC cells that are able to grow and survive in the absence or presence of low androgen levels. 5,6 Although the current chemotherapeutic treatments for HRPC generally improve the quality of life of patients, they are palliative with a median survival rate of about 12 months after diagnosis. 4,5,7 In fact, the upregulated expression of numerous growth factors and their cognate receptors during the progression of localized PCs into advanced and metastatic disease states appears to be responsible in part to the development of resistance to chemotherapeutic drugs. 5,[8][9][10][11] More particularly, the overexpression of epidermal growth fact...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.