The dopaminergic system plays a central role in the processing of reward or reinforcement since drugs that have reinforcing properties all share the ability to elevate dopamine (DA) levels in the nucleus accumbens or neostriatum. Histamine H1 receptor antagonists are known to have reinforcing effects in humans and laboratory rats. Here, we examined the effect of systemic (i.p.) treatment with two H1 antagonists, chlorpheniramine and pyrilamine, on the extracellular levels of DA and its metabolites dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in the neostriatum and nucleus accumbens of urethane-anesthetized rats. Dopamine and metabolites were measured using in vivo microdialysis and HPLC with electrochemical detection. Saline injections did not produce significant effects on DA, DOPAC, or HVA levels in the neostriatum or nucleus accumbens. In the neostriatum, chlorpheniramine administration (5 and 20 mg/kg) produced a sustained increase in DA to approximately 140 and 180% of pre-injection baseline levels, respectively. In the nucleus accumbens, chlorpheniramine (20 mg/kg) produced a transient increase in DA levels to about 300% of baseline. In both the neostriatum and nucleus accumbens, DOPAC and HVA decreased after chlorpheniramine treatment. Pyrilamine administration (10 and 20 mg/kg) produced a sustained increase in neostriatal DA levels to 140 and 165%, respectively, and accumbens DA increased transiently to 230% after a dose of 20 mg/kg. Levels of neostriatal and accumbens DOPAC and HVA decreased after pyrilamine treatment. These results show that H1 antagonists can potently enhance DA levels in the neostriatum and nucleus accumbens of urethane-anesthetized rats. The neurochemical effects on DA and its metabolites seen here (increased DA, decreased DOPAC and HVA) are similar to those commonly observed with drugs of abuse (e.g. psychostimulants). The interaction of H1 antagonists with dopaminergic transmission may explain the reinforcing effects and abuse potential associated with these compounds.
Background and purpose:In the mammalian brain, histaminergic neurotransmission is mediated by the postsynaptic histamine H1 and H2 receptors and the presynaptic H3 autoreceptor, which also acts as a heteroreceptor. The H1 receptor has been implicated in spatial learning and memory formation. However, pharmacological and lesion studies have revealed conflicting results. To examine the involvement of histamine H1 receptor in spatial reference and working memory formation, H1 receptor knockout mice (KO) were tested in the eight-arm radial maze. Previously, we found that the H1 receptor-KO mice showed reduced emotionality when confronted with spatial novelty. As it is known that emotions can have an impact on spatial learning and memory performance, we also evaluated H1 receptor-KO mice in terms of emotional behaviour in the light-dark box. Experimental approach: Mice lacking the H1 receptor and wild-type mice (WT) were tested for spatial reference and working memory in an eight-arm radial maze with three arms baited and one trial per day. Emotional behaviour was measured using the light-dark test. Key results: The H1 receptor-KO mice showed impaired spatial reference and working memory in the radial maze task. No significant differences between H1 receptor-KO and WT mice were observed in the light-dark test.
Conclusions and implications:The spatial memory deficits of the H1 receptor-KO mice might be due to the reported changes in cholinergic neurochemical parameters in the frontal cortex and the CA1 subregion of the hippocampus, to impaired synaptic plasticity in the hippocampus, and/or to a dysfunctional brain reward/reinforcement system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.