The sharpness of tips used in scanning tunneling microscopy (STM) is one factor which affects the resolution of the STM image. In this paper, we report on a direct-current (dc) drop-off electrochemical etching procedure used to sharpen tips for STM. The shape of the tip is dependent on the meniscus which surrounds the wire at the air–electrolyte interface. The sharpness of the tip is related to the tensile strength of the wire and how quickly the electrochemical reaction can be stopped once the wire breaks. We have found that the cutoff time of the etch circuit has a significant effect on the radius of curvature and cone angle of the etched tip; i.e., the faster the cutoff time, the sharper the tip. We have constructed an etching circuit with a minimum cut-off time of 500 ns which uses two fast metal–oxide semiconductor field effect transistors (MOSFET) and a high-speed comparator. The radius of curvature of the tips can be varied from approximately 20 to greater than 300 nm by increasing the cutoff time of the circuit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.