OBJECTIVE-A lower in vivo mitochondrial function has been reported in both type 2 diabetic patients and first-degree relatives of type 2 diabetic patients. The nature of this reduction is unknown. Here, we tested the hypothesis that a lower intrinsic mitochondrial respiratory capacity may underlie lower in vivo mitochondrial function observed in diabetic patients.RESEARCH DESIGN AND METHODS-Ten overweight diabetic patients, 12 first-degree relatives, and 16 control subjects, all men, matched for age and BMI, participated in this study. Insulin sensitivity was measured with a hyperinsulinemic-euglycemic clamp. Ex vivo intrinsic mitochondrial respiratory capacity was determined in permeabilized skinned muscle fibers using high-resolution respirometry and normalized for mitochondrial content. In vivo mitochondrial function was determined by measuring phosphocreatine recovery half-time after exercise using 31 P-magnetic resonance spectroscopy.RESULTS-Insulin-stimulated glucose disposal was lower in diabetic patients compared with control subjects (11.2 Ϯ 2.8 vs. 28.9 Ϯ 3.7 mol ⅐ kg Ϫ1 fat-free mass ⅐ min Ϫ1 , respectively; P ϭ 0.003), with intermediate values for first-degree relatives (22.1 Ϯ 3.4 mol ⅐ kg Ϫ1 fat-free mass ⅐ min Ϫ1 ). In vivo mitochondrial function was 25% lower in diabetic patients (P ϭ 0.034) and 23% lower in first-degree relatives, but the latter did not reach statistical significance (P ϭ 0.08). Interestingly, ADP-stimulated basal respiration was 35% lower in diabetic patients (P ϭ 0.031), and fluoro-carbonyl cyanide phenylhydrazone-driven maximal mitochondrial respiratory capacity was 31% lower in diabetic patients (P ϭ 0.05) compared with control subjects with intermediate values for first-degree relatives.CONCLUSIONS-A reduced basal ADP-stimulated and maximal mitochondrial respiratory capacity underlies the reduction in in vivo mitochondrial function, independent of mitochondrial content. A reduced capacity at both the level of the electron transport chain and phosphorylation system underlies this impaired mitochondrial capacity.
OBJECTIVEMitochondrial dysfunction and fat accumulation in skeletal muscle (increased intramyocellular lipid [IMCL]) have been linked to development of type 2 diabetes. We examined whether exercise training could restore mitochondrial function and insulin sensitivity in patients with type 2 diabetes.RESEARCH DESIGN AND METHODSEighteen male type 2 diabetic and 20 healthy male control subjects of comparable body weight, BMI, age, and Vo2max participated in a 12-week combined progressive training program (three times per week and 45 min per session). In vivo mitochondrial function (assessed via magnetic resonance spectroscopy), insulin sensitivity (clamp), metabolic flexibility (indirect calorimetry), and IMCL content (histochemically) were measured before and after training.RESULTSMitochondrial function was lower in type 2 diabetic compared with control subjects (P = 0.03), improved by training in control subjects (28% increase; P = 0.02), and restored to control values in type 2 diabetic subjects (48% increase; P < 0.01). Insulin sensitivity tended to improve in control subjects (delta Rd 8% increase; P = 0.08) and improved significantly in type 2 diabetic subjects (delta Rd 63% increase; P < 0.01). Suppression of insulin-stimulated endogenous glucose production improved in both groups (−64%; P < 0.01 in control subjects and −52% in diabetic subjects; P < 0.01). After training, metabolic flexibility in type 2 diabetic subjects was restored (delta respiratory exchange ratio 63% increase; P = 0.01) but was unchanged in control subjects (delta respiratory exchange ratio 7% increase; P = 0.22). Starting with comparable pretraining IMCL levels, training tended to increase IMCL content in type 2 diabetic subjects (27% increase; P = 0.10), especially in type 2 muscle fibers.CONCLUSIONSExercise training restored in vivo mitochondrial function in type 2 diabetic subjects. Insulin-mediated glucose disposal and metabolic flexibility improved in type 2 diabetic subjects in the face of near–significantly increased IMCL content. This indicates that increased capacity to store IMCL and restoration of improved mitochondrial function contribute to improved muscle insulin sensitivity.
Objective: To examine whether rosiglitazone alters gene expression of some key genes involved in mitochondrial biogenesis and oxidative capacity in skeletal muscle of type 2 diabetic patients, and whether this is associated with alterations in skeletal muscle oxidative capacity and lipid content. Design: Skeletal muscle gene expression, mitochondrial protein content, oxidative capacity and lipid accumulation were measured in muscle biopsies obtained from diabetic patients, before and after 8 weeks of rosiglitazone treatment, and matched controls. Furthermore, whole-body insulin sensitivity and substrate utilization were assessed. Subjects: Ten obese type 2 diabetic patients and 10 obese normoglycemic controls matched for age and BMI. Methods: Gene expression and mitochondrial protein content of complexes I-V of the respiratory chain were measured by quantitative polymerase chain reaction and Western blotting, respectively. Histochemical staining was used to quantify lipid accumulation and complex II succinate dehydrogenase (SDH) activity. Insulin sensitivity and substrate utilization were measured during a hyperinsulinemic-euglycemic clamp with indirect calorimetry. Results: Skeletal-muscle mRNA of PGC-1a and PPARb/d -but not of other genes involved in glucose, fat and oxidative metabolism -was significantly lower in diabetic patients (Po0.01). Rosiglitazone significantly increased PGC-1a (B2.2-fold, Po0.01) and PPARb/d (B2.6-fold, Po0.01), in parallel with an increase in insulin sensitivity, SDH activity and metabolic flexibility (Po0.01). Surprisingly, none of the measured mitochondrial proteins was reduced in type 2 diabetic patients, nor affected by rosiglitazone treatment. No alterations were seen in muscular fat accumulation upon treatment. Conclusion: These results suggest that the insulin-sensitizing effect of rosiglitazone may involve an effect on muscular oxidative capacity, via PGC-1a and PPARb/d, independent of mitochondrial protein content and/or changes in intramyocellular lipid.
Objective: The physiologic role of circulating endogenous testosterone and estrogen concentrations in relation to lean body mass (LBM) and muscle strength is not as well documented in postmenopausal women as in elderly men. Design: Three hundred and twenty-nine healthy postmenopausal women were randomly selected from a general practice population-based sample aged between 55 and 85 years. Methods: Total testosterone and estrogen (TT and TE) and sex hormone-binding globulin (SHBG) were determined and estimates of bioavailable testosterone (free androgen index (TT/SHBG, FAI), calculated free testosterone (cFT), and estrogen (TE/SHBG, ESR) were calculated. Examinations included bone mineral density (BMD) of the spine and femoral neck (FN), LBM, maximum quadriceps extension strength (MES) and maximum handgrip strength (MGS), timed up-and-go test (TUGT), osteocalcin (OC), and urinary deoxy-pyridinoline/creatinine (DPyr). Correlations were assessed using Pearson's correlation coefficient (r). Results: With advancing age, LBM, MES, MGS, BMD, and ESR significantly declined (range r: K0.356 to K0.141) and TUGT, and DPyr significantly increased (range r: 0.135 to 0.282 (P!0.05)). After age-adjustment, LBM, MES, and BMD in spine and FN were significantly related to bioavailable testosterone (range r: 0.146 to 0.193, for cFT, and 0.157 to 0.224, for FAI) and to ESR (range r: 0.162 to 0.273). OC and DPyr were significantly inversely related to ESR (r: K0.154 and K0.144 respectively). Conclusions: Age-related loss of LBM, MES and BMD in postmenopausal women is partly dependent on the presence of endogenous bioavailable testosterone and estrogen.
We show that UCP3 protein content is reduced in prediabetic subjects and type 2 diabetic patients. Eight weeks of rosiglitazone treatment restores skeletal muscle UCP3 protein in diabetic patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.