Total protein secreted in the intrauterine lumen increases between day 10 and 13 post-estrus in both cyclic and pregnant gilts. The objective of this experiment was to identify those intrauterine proteins whose secretion changes during this time period. Sixteen mature gilts were either mated (day 0) or remained cyclic and were slaughtered at either day 10 or day 13 (n 5 4 per status by day). At slaughter, each uterine horn was flushed with 20 ml Minimal Essential Medium. Flushings were dialyzed extensively against distilled water. A 0.5 ml aliquot of each was lyophilized, subjected to two-dimensional PAGE, and protein spots were identified following Coomassie staining of each gel. Densitometry was used to compare relative amounts of each spot. After statistical analysis, spots that differed due to either day, status, or day by status interaction were excised and digested in-gel with trypsin. The resulting peptides were analyzed by tandem mass spectrometry (MS/MS). Using MS/MS data, protein identification for each spot was attempted. There were 280 matching spots, of which 132 were significantly (P < 0.05 or 0.01) affected by pregnancy status, day, or the day by status interaction. Most (73%) spots increased from day 10 to day 13 with no effect of pregnancy. Several spots were identified as proteases or their inhibitors. Others potentially modify glycolipids and/or glycoproteins. These results indicate that the concentrations of many proteins within the intrauterine environment during early pregnancy are independent of the conceptus and could play roles in regulating the endometrial or conceptus glycocalyx.
The effects of L-carnitine on porcine fetal growth traits and the IGF system were determined. Fourth-parity sows were fed a gestation diet with either a 50-g top dress containing 0 (control, n = 6) or 100 mg of L-carnitine (n = 6). At midgestation, fetuses were removed for growth measurements, and porcine embryonic myoblasts (PEM) were isolated from semitendinosus. Real-time quantitative PCR was used to measure growth factor messenger RNA (mRNA) levels in the uterus, placenta, muscle, hepatic tissue, and cultured PEM. A treatment x day interaction (P = 0.02) was observed for maternal circulating total carnitine. Sows fed L-carnitine had a greater (P = 0.01) concentration of total carnitine at d 57 than control sows. Circulating IGF-I was not affected (P = 0.55) by treatment. Supplementing sows with L-carnitine resulted in larger (P = 0.02) litters (15.5 vs. 10.8 fetuses) without affecting litter weight (P = 0.07; 1,449.6 vs. 989.4 g) or individual fetal weight (P = 0.88) compared with controls. No treatment effect was found for muscle IGF-I (P = 0.36), IGF-II (P = 0.51), IGFBP-3 (P = 0.70), or IGFBP-5 (P = 0.51) mRNA abundance. The abundance of IGF-I (P = 0.72), IGF-II (P = 0.34), and IGFBP-3 (P = 0.99) in hepatic tissue was not influenced by treatment. Uterine IGF-I (P = 0.46), IGF-II (P = 0.40), IGFBP-3 (P = 0.29), and IGFBP-5 (P = 0.35) mRNA abundance did not differ between treatments. Placental IGF-I (P = 0.30), IGF-II (P = 0.18), IGFBP-3 (P = 0.94), and IGFBP-5 (P = 0.42) mRNA abundance did not differ between treatments. There was an effect of side of the uterus for IGF-I (P = 0.04) and IGF-II (P = 0.007) mRNA abundance; IGF-I mRNA abundance was greater in the left uterine horn than in the right uterine horn (0.14 and 0.07 relative units, respectively). Placental IGF-II mRNA abundance was greater (P = 0.007) in the left than in the right uterine horn (483.5 and 219.59, respectively). The abundance of IGFBP-3 was not affected by uterine horns in either uterine (P = 0.66) or placental (P = 0.13) tissue. There was no treatment difference for IGF-I (P = 0.31) or IGFBP-5 (P = 0.13) in PEM. The PEM isolated from sows fed L-carnitine had decreased IGF-II (P = 0.02), IGFBP-3 (P = 0.03), and myogenin (P = 0.04; 61, 59, and 67%, respectively) mRNA abundance compared with controls. These data suggest that L-carnitine supplemented to gestating sows altered the IGF system and may affect fetal growth and development.
We conclude that discontinuation of estrogen by women well beyond the age of menopause is high; more than two-thirds discontinue within 2 years of starting. Women starting therapy with raloxifene are 25% percent less likely to discontinue their medication than those starting estrogen, providing some promise that long-term benefits of raloxifene may be more easily achieved than those of estrogen.
We evaluated effects of a 5% (dry matter basis) ground flaxseed supplement (flax) and a trenbolone acetate and estradiol-17beta implant, Revalor-S, on circulating IGF-I and muscle IGF-I messenger RNA (mRNA). Sixteen crossbred yearling steers (initial BW = 397 kg) were assigned randomly to one of four treatments: 1) flax/implant; 2) nonflax/implant; 3) flax/nonimplant; and 4) nonflax/nonimplant. Serum was harvested from blood collected on d 0 (before implant or flax addition), 14, and 28, and used in subsequent analyses of circulating IGF-I. Biopsy samples (0.5 g) were obtained from the longissimus muscle on d 0, 14, and 28. Total RNA was isolated from the muscle samples, and real-time quantitative-PCR was used to assess relative differences in IGF-I mRNA. Flax supplementation had no effect (P > 0.10) on circulating IGF-I concentrations. Following implantation, sera from implanted steers had 52 and 84% greater (P < 0.05) IGF-I concentrations than sera from nonimplanted steers on d 14 and 28, respectively. On d 28, local muscle IGF-I mRNA levels increased 2.4-fold (P < 0.01) in biopsy samples obtained from implanted compared with nonimplanted steers. Muscle biopsy samples from nonflax cattle had 4.4-fold higher (P < 0.01) levels of IGF-I mRNA than those from flax cattle on d 28. To determine whether a component of flax, alpha-linolenic acid (alphaLA), was directly responsible for IGF-I mRNA down-regulation, we incubated primary cultures of bovine satellite cells, from implanted and nonimplanted steers, in two concentrations of alphaLA (10 nM and 1 microM). An implant x dose interaction (P < 0.05) was observed for IGF-I mRNA concentrations in bovine satellite cells cultured for 72 h with alphaLA. Satellite cells from nonimplanted steers had similar (P > 0.10) IGF-I mRNA concentration regardless of the level of alphaLA exposure; however, satellite cells from implanted steers exposed to 10 nM and 1 microM alphaLA had 2.5- and 2.0-fold greater IGF-I mRNA levels, respectively, than cells from implanted steers that were not exposed to alphaLA (P < 0.05). Administration of a Revalor-S implant increased circulating IGF-I and local muscle IGF-I mRNA concentrations in finishing cattle. However, muscle IGF-I mRNA levels were decreased by flax supplementation. Muscle cell culture experiments suggested that alphaLA was not responsible for the IGF-I mRNA down-regulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.