This paper proposed an ultra-low power bandage-type ECG sensor (the size: 76 × 34 × 3 (mm(3)) and the power consumption: 1 mW) which allows for a continuous and real-time monitoring of a user's ECG signals over 24h during daily activities. For its compact size and lower power consumption, we designed the analog front-end, the SRP (Samsung Reconfigurable Processor) based DSP of 30 uW/MHz, and the ULP wireless RF of 1 nJ/bit. Also, to tackle motion artifacts(MA), a MA monitoring technique based on the HCP (Half-cell Potential) is proposed which resulted in the high correlation between the MA and the HCP, the correlation coefficient of 0.75 ± 0.18. To assess its feasibility and validity as a wearable health monitor, we performed the comparison of two ECG signals recorded form it and a conventional Holter device. As a result, the performance of the former is a little lower as compared with the latter, although showing no statistical significant difference (the quality of the signal: 94.3% vs 99.4%; the accuracy of arrhythmia detection: 93.7% vs 98.7%). With those results, it has been confirmed that it can be used as a wearable health monitor due to its comfortability, its long operation lifetime and the good quality of the measured ECG signal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.