Exposure to competitive mental tasks significantly reduced the urinary sodium and fluid excreted by young men with one or two hypertensive parents or with borderline hypertension. In this high-risk group, the degree of retention was directly related to the magnitude of heart rate increase during stress, suggesting common mediation by way of the sympathetic nervous system. Thus, psychological stress appears to induce changes in renal excretory functions that may play a critical role in long-term blood pressure regulation.
Renal responses to atrial natriuretic peptide were examined in conscious dogs with congestive heart failure (tricuspid insufficiency) and in conscious rats with nephrotic syndrome (adriamycin). Heart-failure dogs displayed elevated atrial pressure and heart weights, blunted natriuresis to a saline load, and ascites. Nephrotic rats displayed proteinuria, hypoproteinemia, sodium retention, and ascites. In control animals, atrial natriuretic peptide increased absolute and fractional urine flow rate and urinary sodium excretion. Although atrial natriuretic peptide increased absolute and fractional urine flow rate and urinary sodium excretion in conscious heart-failure dogs and nephrotic rats, the responses were markedly blunted. In heart-failure dogs, infusion of atrial natriuretic peptide increased plasma concentrations of norepinephrine and epinephrine. In nephrotic rats, renal denervation reversed the blunted diuretic and natriuretic responses to atrial natriuretic peptide. Mean arterial pressure, glomerular filtration rate, and p-aminohippurate clearance were affected similarly by atrial natriuretic peptide in heart-failure dogs or nephrotic rats vs. control animals. Conscious congestive heart-failure dogs and conscious nephrotic rats have blunted diuretic and natriuretic responses to atrial natriuretic peptide.
The diuretic and natriuretic responses to atrial natriuretic peptide in conscious rats with cirrhosis (chronic bile duct ligation) were examined. Cirrhotic rats had sodium retention, ascites, and elevated liver weights. In conscious control rats, atrial natriuretic peptide increased urine flow rate and urinary sodium excretion. In conscious cirrhotic rats, atrial natriuretic peptide had no effect on urine flow rate or urinary sodium excretion. Renal denervation reversed the blunted diuretic and natriuretic responses to atrial natriuretic peptide in cirrhotic rats. Renal sympathetic nerve activity increased in conscious cirrhotic rats during infusion of atrial natriuretic peptide but decreased in conscious control rats. Inhibition of the renin-angiotensin system with captopril had no effect on the diuretic or natriuretic responses to atrial natriuretic peptide in conscious control or cirrhotic rats. Mean arterial pressure, glomerular filtration rate, and renal plasma flow were affected similarly by atrial natriuretic peptide in control and cirrhotic rats. Increased renal sympathetic nerve activity, but not angiotensin II, mediates the blunted diuretic and natriuretic responses to atrial natriuretic peptide in conscious cirrhotic rats.
The effects of intracerebroventricular (i.c.v.) administration of beta-adrenergic receptor antagonists (d,l-propranolol or timolol, 30 micrograms in 2 microL of isotonic saline) on the increased renal sympathetic nerve activity and decreased urinary sodium excretion (UNaV) responses to stressful environmental stimulation (air jet to head) in conscious spontaneously hypertensive rats (SHR) were examined. Before i.c.v. d,l-propranolol or timolol, air stress increased renal activity (68% from 10.6 +/- 2.1 and 63% from 8.2 +/- 0.9 integrator resets/min respectively). In contrast, after i.c.v. d,l-propranolol or timolol in the same conscious SHR, air stress had no effect on renal sympathetic nerve activity (+7% from 8.1 +/- 1.7 and +7% from 5.5 +/- 1.0 integrator resets/min respectively). Air stress decreased UNaV in conscious SHR given i.c.v. saline vehicle (25% from 2.8 +/- 0.5 microEq/min/100 g body weight), but had no effect on effective renal plasma flow or glomerular filtration rate. In contrast, after i.c.v. d,l-propranolol or timolol, air stress had no effect on UNaV (0% from 2.8 +/- 0.5 and +9% from 3.3 +/- 0.3 microEq/min/100 g body weight respectively). Mean arterial pressure increased similarly during air stress with i.c.v. saline-vehicle or beta-adrenergic receptor antagonists. Intravenous administration of the same doses of d,l-propranolol or timolol did not prevent the increased renal sympathetic nerve activity or decreased UNaV responses resulting from air stress. These results suggest that central nervous system beta-adrenergic receptors mediate the increased renal sympathetic nerve activity and decreased UNaV responses resulting from stressful environmental stimulation in conscious SHR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.