The pathogenic role of antiendothelial cell antibodies (AECA) remains unclear. They are frequently associated with antibodies to anionic phospholipids (PL), such as phosphatidylserine (PS), which is difficult to reconcile with the distribution of PL molecular species within the plasma membrane. Since it is already known that PS is transferred to the outer face of the membrane as a preclude to apoptosis, the possibility exists that apoptosis is initiated by AECA. AECA-positive/anti-PL antibody-negative sera from eight patients with systemic sclerosis (SS) and 21 control patients were evaluated. Endothelial cells (EC) were incubated with AECA and the exposure of PS was established through the binding of annexin V. Hypoploid cell enumeration, DNA fragmentation, and optical and ultrastructural analyses of EC were used to confirm apoptosis. Incubation of EC with AECA derived from six of eight patients with SS led to the expression of PS on the surface of the cells. This phenomenon was significantly more frequent in SS ( P Ͻ 0.04) than in control diseases. The redistribution of plasma membrane PS preceded other events associated with apoptosis: hypoploidy, DNA fragmentation, and morphology characteristic for apoptosis. Apoptosis-inducing AECA did not recognize the Fas receptor. We conclude that AECA may be pathogenic by inducing apoptosis. (
We studied seven patients (fetuses/infants) from six unrelated families affected by central core disease (CCD) and presenting with a fetal akinesia syndrome. Two fetuses died before birth (at 31 and 32 weeks) and five infants presented severe symptoms at birth (multiple arthrogryposis, congenital dislocation of the hips, severe hypotonia and hypotrophy, skeletal and feet deformities, kyphoscoliosis, etc.). Histochemical and ultrastructural studies of muscle biopsies confirmed the diagnosis of CCD showing unique large eccentric cores. Molecular genetic investigations led to the identification of mutations in the ryanodine receptor (RYR1) gene in three families, two with autosomal recessive (AR) and one with autosomal dominant (AD) inheritance. RYR1 gene mutations were located in the C-terminal domain in two families (AR and AD) and in the N-terminal domain of the third one (AR). This is the first report of mutations in the RYR1 gene involved in a severe form of CCD presenting as a fetal akinesia syndrome with AD and AR inheritances.
Increased susceptibility to apoptosis has been shown in many models of mitochondrial defects but its relevance to human diseases is still discussed. We addressed the presence of apoptosis in muscle from patients with mitochondrial DNA (mtDNA) disorders. Taking advantage of the mosaic pattern of muscle morphological anomalies associated with heteroplasmic mtDNA alterations, we have used an in situ approach to address the relationship between apoptosis and respiratory defect, mitochondrial proliferation and mutation load. Different patterns of mitochondrial morphological alterations were provided by the analysis of muscles with large mtDNA deletion (16 cases) or with the MELAS mutation (4 cases). The patient's age at biopsy ranged from 0.4 to 66 years and the muscle mutant mtDNA proportion from 32 to 82%. Apoptotic muscle fibres were observed in a small proportion of muscle fibres of 16 out of the 20 biopsies by three different detection methods for different steps of apoptosis: caspase 3 activation, fragmentation of nuclear DNA [terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (TUNEL) assay] or overexpression of the pro-apoptotic factor Bax. Analysis of apoptotic features in parallel to cytochrome c oxidase (COX) and succinate dehydrogenase activity of more than 34,000 individual muscle fibres showed that apoptosis occurred only in muscle fibres with mitochondrial proliferation (ragged red fibres, RRF) irrespective of their COX activity. Molecular analyses of single muscle fibres evidenced that, as expected, the presence of COX defect was associated with higher proportion of mutant mtDNA and lower amount of normal mtDNA. Within COX-defective fibres, the presence of mitochondrial proliferation was associated with increase of the mtDNA content but without change in the ratio between normal and mutant mtDNA molecules, thus showing that mitochondrial proliferation was accompanied by similar amplification of normal and mutant mtDNA molecules. Within RRF, apoptosis was associated with higher mutation proportion, suggesting that it was provoked by severe respiratory defect in the same time as increased mitochondrial mass. In conclusion, apoptosis most probably contributes to mitochondrial pathology. It is tightly linked to mitochondrial proliferation and high mutation load. When considering training therapeutics, one will have to take into account the possibility to induce apoptosis in parallel to mitochondrial proliferation.
The intestine plays a major role in the pathophysiology of multiorgan failure. Although the systemic inflammatory response might be induced by endotoxin released through bacterial translocation, other factors such as intestinal ischemia might be implicated. We investigated the relationship between intestinal ischemia-reperfusion and cytokine release in rat models of hemorrhagic or endotoxic shock. Plasma levels of tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), lactate, and endotoxin, as well as macrophage TNF-alpha and IL-6 mRNA expression, were assessed at the end of shock and resuscitation. Hemodynamic changes and lactate levels suggested the presence of intestinal ischemia in both models. Mesenteric levels of TNF-alpha and IL-6 were increased by hemorrhage and further increased after saline resuscitation. Similar results were obtained with mRNA cytokine gene expression in macrophages. Endotoxin was not detectable in the hemorrhagic group. Endotoxic shock also increased production of cytokines, which, in contrast to hemorrhage, was not further increased by resuscitation. These results suggest that intestinal ischemia-reperfusion upon hemorrhage and resuscitation may be a major trigger for cytokine gene expression in the absence of endotoxin.
Despite recent progress in the genetic characterization of congenital muscle diseases, the genes responsible for a significant proportion of cases remain unknown. We analysed two branches of a large consanguineous family in which four patients presented with a severe new phenotype, clinically marked by neonatal-onset muscle weakness predominantly involving axial muscles, life-threatening respiratory failure, skin abnormalities and joint hyperlaxity without contractures. Muscle biopsies showed the unreported association of multi-minicores, caps and dystrophic lesions. Genome-wide linkage analysis followed by gene and exome sequencing in patients identified a homozygous nonsense mutation in TRIP4 encoding Activating Signal Cointegrator-1 (ASC-1), a poorly characterized transcription coactivator never associated with muscle or with human inherited disease. This mutation resulted in TRIP4 mRNA decay to around 10% of control levels and absence of detectable protein in patient cells. ASC-1 levels were higher in axial than in limb muscles in mouse, and increased during differentiation in C2C12 myogenic cells. Depletion of ASC-1 in cultured muscle cells from a patient and in Trip4 knocked-down C2C12 led to a significant reduction in myotube diameter ex vivo and in vitro, without changes in fusion index or markers of initial myogenic differentiation. This work reports the first TRIP4 mutation and defines a novel form of congenital muscle disease, expanding their histological, clinical and molecular spectrum. We establish the importance of ASC-1 in human skeletal muscle, identify transcriptional co-regulation as novel pathophysiological pathway, define ASC-1 as a regulator of late myogenic differentiation and suggest defects in myotube growth as a novel myopathic mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.