Two experiments were conducted to determine the total tract digestibility of energy and the DE and ME values of 10 European wheat dried distillers grains with solubles (DDGS) fed to growing pigs and adult sows. The wheat DDGS were obtained from European ethanol plants and selected to get a large variability. One control diet, based on wheat (87.2%), soybean meal (10.0%), and minerals and vitamins, and 10 experimental diets prepared from the control diet and 25% each of the 10 sources of DDGS, were fed to 66 crossbred barrows (6 per diet) according to a factorial arrangement or 6 adult sows according to a pseudo Latin square design. Animals were placed in metabolism cages that allowed for the total, but separate, collection of feces and urine for 8 to 10 d after a 7- to 11-d adaptation period. By subtracting the contribution from the control diet in the DDGS-containing diets (i.e., difference method), N and GE digestibilities and DE and ME values for each source of DDGS were calculated. The energy digestibility in wheat DDGS averaged 66.5% (56.3 to 76.0%) and 71.2% (59.7 to 78.2%) in growing pigs and adult sows, respectively. Consequently, average (range) DE values of DDGS were 14.0 (11.8 to 16.2) and 14.9 (12.5 to 16.4) MJ/kg of DM for growing pigs and adult sows, respectively. Our data show that DE content of wheat DDGS can be predicted from their ADF content or from the lightness score (L). By excluding the dark and overheated samples (L <50) with the least energy digestibility and DE values, the average energy digestibility values were 69.5 and 74.4% in growing pigs and adult sows, respectively, with corresponding DE values of 14.6 and 15.6 MJ/kg DM, which are more representative of a well-controlled process for DDGS preparation. The negative effect of L on energy value and energy digestibility indicates that the occurrence of Maillard reactions should be reduced to maximize the energy value of wheat DDGS for pigs.
Fusarium mycotoxins (FUS) occur frequently in poultry diets, and regulatory limits are laid down in several countries. However, the limits were established for exposure to a single mycotoxin, whereas multiple contamination is more realistic, and different studies have demonstrated that it is not possible to predict interactions between mycotoxins. The purpose of this study was thus to compare the toxic effect of deoxynivalenol (DON), fumonisins (FB) and zearalenone (ZON), alone and in combination on broiler chickens, at the maximum tolerated level established by the EU for poultry feed. Experimental corn-soybean diets incorporated ground cultured toxigenic Fusarium strains. One feed was formulated for chickens 0 to 10 days old and another for chickens 11 to 35 days old. The control diets were mycotoxin free, the DON diets contained 5 mg DON/kg, the FB diet contained 20 mg FB1 + FB2/kg, and the ZON diet contained 0.5mg ZON/kg. The DONFBZON diet contained 5, 20, and 0.5 mg/kg of DON, FB1 + FB2, and ZON, respectively. Diets were distributed ad libitum to 70 broilers (male Ross PM3) separated into five groups of 14 chickens each reared in individual cages from one to 35 days of age. On day 35, after a starvation period of 8 h, a blood sample was collected, and all the animals were killed and autopsied. No difference between groups that could be attributed to FUS was observed in performances, the relative weight of organs, biochemistry, histopathology, intestinal morphometry, variables of oxidative damage, and markers of testicle toxicity. A significant increase in sphinganine and in the sphinganine to sphingosine ratio was observed in broilers fed FB. Taken together, these results suggest that the regulatory guidelines established for single contamination of broiler chickens fed with DON, FB, and ZON can also be used in the case of multiple contamination with these toxins.
Four experiments were conducted to measure total tract metabolizability of gross energy (GE), the AME, and AMEn or AME content corrected for a standardized N retention (AMEs) of 10 European wheat dried distillers grains with solubles (DDGS) in roosters, broilers (3 wk old), layers (25 wk old), and growing turkeys (10 wk old). The wheat DDGS were obtained from 7 European ethanol plants and selected to get a large variability in chemical composition. The AME, AMEn, or AMEs of wheat DDGS was obtained according to the difference method. The highest AMEn:GE was obtained for roosters with an average (minimum-maximum) value of 49% (43-55), the lowest in turkeys (43%; 34-50), and intermediate values (47%; 41-57 and 46%; 36-50) in broilers and layers, respectively. Corresponding AMEn values were 10.3 (9.0-11.3), 9.9 (8.5-11.7), 9.6 (7.8-10.5), and 9.6 (7.8-10.5) MJ/kg of DM for roosters, broilers, layers, and turkeys, respectively. The AMEs for N retention equal to 50% of N intake was about 0.6 MJ higher than the corresponding AMEn value. Our data indicate that the AMEn content of wheat DDGS can be predicted from either their acid detergent fiber content (R2=0.79) or the lightness score (L*; R2=0.77) with a common slope but different intercepts for the 4 poultry categories. If dark and overheated samples (L*<50; n=3) with the lowest AMEn:GE ratio and AMEn values are excluded, the average AMEn:GE ratio becomes 51, 49, 48, and 45% in roosters, broilers, layers, and turkeys, respectively, with corresponding AMEn values of 10.7, 10.2, 10.0, and 9.5 MJ/kg of DM that are more representative of a well-controlled process for DDGS preparation. The negative effect of L* on energy value and energy metabolizability indicates that overheating while drying should be minimized to maximize the energy value of wheat DDGS for poultry. Finally, equations for predicting AME values in layers, broilers, or turkeys from the AME values in roosters are proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.