These findings suggest that deletion of VCX-A and NLGN4 can result in variable phenotypic features and that normal mental development can be achieved despite this deletion, emphasizing the importance of environmental factors and possible modifier genes.
Pelizaeus-Merzbacher disease is an X-linked hypomyelinating leukodystrophy caused by mutations or rearrangements in PLP1. It presents in infancy with nystagmus, jerky head movements, hypotonia and developmental delay evolving into spastic tetraplegia with optic atrophy and variable movement disorders. A clinically similar phenotype caused by recessive mutations in GJC2 is known as Pelizaeus-Merzbacher-like disease. Both genes encode proteins associated with myelin. We describe three siblings of a consanguineous family manifesting the typical infantile-onset Pelizaeus-Merzbacher disease-like phenotype slowly evolving into a form of complicated hereditary spastic paraplegia with mental retardation, dysarthria, optic atrophy and peripheral neuropathy in adulthood. Magnetic resonance imaging and spectroscopy were consistent with a demyelinating leukodystrophy. Using genetic linkage and exome sequencing, we identified a homozygous missense c.399C>G; p.S133R mutation in MAG. This gene, previously associated with hereditary spastic paraplegia, encodes myelin-associated glycoprotein, which is involved in myelin maintenance and glia-axon interaction. This mutation is predicted to destabilize the protein and affect its tertiary structure. Examination of the sural nerve biopsy sample obtained in childhood in the oldest sibling revealed complete absence of myelin-associated glycoprotein accompanied by ill-formed onion-bulb structures and a relatively thin myelin sheath of the affected axons. Immunofluorescence, cell surface labelling, biochemical analysis and mass spectrometry-based proteomics studies in a variety of cell types demonstrated a devastating effect of the mutation on post-translational processing, steady state expression and subcellular localization of myelin-associated glycoprotein. In contrast to the wild-type protein, the p.S133R mutant was retained in the endoplasmic reticulum and was subjected to endoplasmic reticulum-associated protein degradation by the proteasome. Our findings identify involvement of myelin-associated glycoprotein in this family with a disorder affecting the central and peripheral nervous system, and suggest that loss of the protein function is responsible for the unique clinical phenotype.
Background: Choreoacanthocytosis (CHAC) is a slowly progressive multisystem disorder with involuntary movements, cognitive decline, behavioral changes, seizures, and polyneuropathy caused by mutations in the VPS13A gene. Objective: To describe the early clinical features and possible genotype-phenotype correlation in CHAC. Design and Setting: Case series in a tertiary care center. Patients and Main Outcome Methods: Choreoacanthocytosis was diagnosed in 3 patients of Jewish origin from 3 unrelated families. We reviewed their medical histories and performed molecular analysis by screening all 73 exons of VPS13A. Results: Trichotillomania, hypertrophic cardiomyopathy, and idiopathic hyperCKemia, in 1 patient each, preceded the development of the full clinical spectrum of CHAC by 2 to 20 years. At diagnosis, 2 patients manifested signs of overt neuromuscular involvement and were homozygous for the 6059delC mutation, whereas 1 patient had only hyporeflexia and was homozygous for the EX23del mutation. Because only 1 of the 2 patients with 6059delC had cardiomyopathy, its relevance to CHAC is unclear. Conclusions: These findings extend the knowledge of significant early clinical heterogeneity in CHAC and suggest a possible genotype-phenotype correlation. Awareness of the early manifestations may prevent misdiagnosis and enable appropriate genetic counseling.
The purpose of this study was to investigate metabolic and hemodynamic responses in two fetal tissues, hindlimb muscle and brain, to an episode of acute moderate asphyxia. Near-infrared spectroscopy was used to measure changes in total hemoglobin concentration ([tHb]) and the redox state of cytochrome oxidase (COX) simultaneously in the brain and hindlimb of near-term unanesthetized fetal sheep in utero. Oxygen delivery (DO(2)) to, and consumption (VO(2)) by, each tissue was derived from the arteriovenous difference in oxygen content and blood flow, measured by implanted flow probes. One hour of moderate asphyxia (n = 11), caused by occlusion of the maternal common internal iliac artery, led to a significant fall in DO(2) to both tissues and to a significant drop in VO(2) by the head. This was associated with an initial fall in redox state COX in the leg but an increase in the brain. [tHb], and therefore blood volume, fell in the leg and increased in the brain. These data suggest the presence of a fetal metabolic response to hypoxia, which, in the brain, occurs rapidly and could be neuroprotective.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.