Models are increasingly being relied upon to inform and support natural resource management. They are incorporating an ever broader range of disciplines and now often confront people without strong quantitative or model-building backgrounds. These trends imply a need for wider awareness of what constitutes good model-development practice, including reporting of models to users and sceptical review of models by users. To this end the paper outlines ten basic steps of good, disciplined model practice. The aim is to develop purposeful, credible models from data and prior knowledge, in consort with end-users, with every stage open to critical review and revision. Best practice entails identifying clearly the clients and objectives of the modelling exercise; documenting the nature (quantity, quality, limitations) of the data used to construct and test the model; providing a strong rationale for the choice of model family and features (encompassing review of alternative approaches); justifying the techniques used to calibrate the model; serious analysis, testing and discussion of model performance; and making a resultant statement of model assumptions, utility, accuracy, limitations, and scope for improvement. In natural resource management applications, these steps will be a learning process, even a partnership, between model developers, clients and other interested parties.
A concise introductory overview of sensitivity assessment (SA) methods for simulation models is given A broad selection of methods is introduced informally and with no more mathematics than necessary The motivation of the methods, their scope and their limitations are discussed Derivative-based SA, algebraic sensitivity analysis, analysis of dynamical models, sample-based SA including variance-decomposition techniques, regional SA and SA via emulation are described
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.