The degree of variation exhibited within the 793/B serotype (also known as 4/91 and CR88 serotypes) was investigated with nine French and 10 British isolates, collected between 1985 and 1994. The S1 part (1644 nucleotides) of the spike protein gene of the first known isolate of this serotype, FR/CR85131/85, had 95.9% to 97% nucleotide identity with the other isolates. Partial sequencing of isolates from Iran and Saudi Arabia, isolated in 2000, revealed approximately 95% nucleotide identity with European isolates, including the two live 793/B vaccinal strains, showing that they were not re-isolations of vaccinal virus. The data indicates that strains within the 793/B serotype have > or =96% nucleotide identity within the whole S1 gene and > or =93% nucleotide identity within the first 560 nucleotides, and > or =92% and > or =86% amino acid identities in the corresponding protein regions. This is similar to the identities exhibited within the Massachusetts serotype. Sequence analysis of a 793/B field isolate after passage in embryonated eggs, then in chickens and then again in eggs revealed selection for a serine and alanine at S1 amino acid position 95 in chicken-passaged and egg-passaged virus, respectively. There was no change in pathogenicity. This is the first demonstration at gene sequence level of host-driven selection for infectious bronchitis virus.
Six isolates originating from acute outbreaks of infectious bursal disease recently reported in broiler and pullet flocks in France were studied with respect to their pathogenicity and their antigenic relatedness to the Faragher 52/70 reference strain. Although the mortality experimentally induced in susceptible chickens by the field strains was sometimes four times higher than that which followed the inoculation of the reference strain (16 to 48 % versus 12 YO), neither mortality nor morbidity were observed in chickens previously vaccinated with a commercial live vaccine and then challenged under the same conditions. Agar gel precipitation tests demonstrated the existence of common antigens in the different strains, and high cross-neutralization indices measured in embryonated specific pathogen free eggs showed them all to belong to serotype I. These data are discussed with reference to previous European and North-American studies on the antigenic status of infectious bursal disease virus.
SUMMARYVirological 1 examination of a severe infectious bronchitis (IB)-like field case in laying hens, led to the isolation of a coronavirus antigenically different from Massachusetts, Connecticut and four Dutch IB variant strains. The virulence of the isolate for the fowl, and its dual tropism for the respiratory and genital tracts were demonstrated. In preliminary cross-protection studies Commercial vaccines did not protect against challenge with this isolate. These points and the possible economic significance of the virus are discussed.
Prevalence of avian influenza infection in free-range mule ducks (a cross between Muscovy [Cairina moschata domesticus] and Pekin ducks [Anas platyrhychos domesticus]) is a matter of concern and deserves particular attention. Thus, cloacal swabs were collected blindly from 30 targeted mule flocks at 4, 8, and 12 wk of age between October 2004 and January 2005. They were stored until selection. On the basis of a positive H5 antibody detection at 12 wk of age with the use of four H5 antigens, the samples from eight flocks were selectively analyzed. Positive samples were first screened with a matrix gene-based real-time reverse transcriptase-polymerase chain reaction assay before virus isolation. Eight avian influenza subtypes (H5N1, H5N2, H5N3, H6N2, H6N8, and H11N9) and three avian paramyxovirus type 1 viruses were isolated. All 11 are characterized as low pathogenicity (LP) and avirulent, respectively, by in vivo tests and, when relevant, nucleotide sequencing of the hemagglutinin (or fusion [F]) protein cleavage site. Regarding H5 isolates, all of their eight genes belong to the avian lineage and some particular genetic traits were determined. H5 genes were fully sequenced and phylogenetically analyzed; they all belong to the Eurasian lineage, lack additional glycosylation sites, and do not cluster, suggesting separate introductions from the wild reservoir. None were grouped with the Asian isolates. The N1 gene (H5N1 isolate) was very close genetically to an Italian LP-H7N1 gene. Antigenic relationships between these H5 isolates and others were assessed comparatively by crossed hemagglutination inhibition tests. All these data are very useful to control the evolution of H5 viruses at the genetic and antigenic level to better understand the source of new outbreaks (new introductions from wild birds or the result of spread among poultry) and to assess the immunity afforded by available vaccines. These data are useful also to update antigens for avian influenza survey and to choose the most suitable vaccine in the case of preventive vaccination of ducks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.